
6809 FLEK"

Operating
System

||:fftechnical systems
consultant, INC.

SWTPC MODIFICATION - APPLICATION NOTICE AN #125A

Product: FLEX™ version 2.7:3 and subsequent versions of FLEX 2./

Date: Jan. 8, 1981 N.R.

Proper FLEX™ Disk Driver Operation

The disk drivers implemented in FLEX" version 2.7 have been

optimized for use with the SWTPC DMF2 and DC4 disk controllers attached
to drives with 3 millisecond step times. These drivers may not function

correctly with older controllers or drives, and must be modified if they
are to be used on the older equipment. This note describes how to

modify FLEX™ version 2.7 for use with DMF1, DC2, or DC3 disk controllers
and Calcomp 143 or Shugart SA-400 disk drives. This version of FLEX™

should not be used with the SWTPC DC-1 disk controller.

When FLEX" is initially booted from disk, special bootstrap disk

drivers are brought in from the first few sectors on the disk. These

drivers will function with any of the above configurations of equipment,
thus allowing FLEX™ to be booted on older equipment. These drivers are

discarded after the bootstrap process is complete. Hence, in order to

properly run commands after booting, the drivers present in FLEX™ itself
must be modified. In order to do this, a two-step process is necessary.

First, once FLEX™ is booted and the "+++" prompt is present, the

MON command is used to return control] to the ROM monitor. (If the

message "-- Can't run STARTUP file." appears, it should be ignored.) The

memory examine and change function of the monitor is then used to alter

the copy of the FLEX™ disk drivers resident in memory.

Second, the FIX command is then used to alter the copy of the

drivers in the FLEX.SYS file on disk. The altered copy of FLEX is then

connected to the bootstrap with the LINK command. Once these changes
are made, the altered FLEX™ may then booted and used normally.

To perform the first step of this alteration, boot the FLEX™ eur

disk and enter the date as requested. Then enter the the ROM monitor

from FLEX™ using the MON command as follows:

+++MON

- SP=C073 US=BFFC DP=00 IX=1234 IY=5678
- PC=D34C A=00 B=00 CC: E-------

>

Select the modifications appropriate for your hardware configuration
from those described below. Make the modifications to the drivers

already resident in memory by using the ROM monitor. Then return to

FLEX™ from the monitor by typing "G".
:

At this point, the disk drivers that have been loaded into memory
have been modified, but the copy on disk in the FLEX.SYS file is still

in its original condition. Use the FIX command to modify FLEX.SYS asfollows:

>G

+++FIX FLEX.SYS

SWTPC Binary File Patch -- Version 2.5

The same modifications made to the drivers in memory must now berepeated to change the copy of the disk drivers in the FLEX.SYS file.When this has been done, exit from the fix command by typing "e". Themodified FLEX.SYS file must be re-linked to the bootstrap process byusing the LINK command:

:e

-- Fix complete.

+++LINK FLEX.SYS
4+

The following descriptions detail the changes that must be madeto the FLEX™ disk drivers for each piece of equipment to be used. If a
Combination of equipment is used, the changes for BOTH types must bemade. For example, if you wish to use a DC-3 disk controller withSA-400 disk drives, you must make both sets of changes to correctlymodify the FLEX™ for normal operation.

NOTE: The addresses specified below are correct for FLEX" CoinThe same modifications may be made to subsequent versions of FLEX™ ee webut the addresses may not be correct. If that is the case, the objectcode in the vicinity of the specified addresses should be examined tolocate the bytes that must be changed.

(1) The following change must be made to use Calcomp 143, 8-inch drives.(To use the Calcomp 143 drives with the DMF2 disk controller thehardware changes described in Modification/Application Notice 102 mustbe made.) The combination of the DMF1 and Calcomp 143 hardware does notrequire this change. This change doubles the amount of time allowed fora step to complete.

Change the byte(s) at DEEF from 86 18 to 86 19
Geri. B7 FO 20 B7 FO 20

CBOF 86 08 86 09.
CB1l B7 FO 20 B7 FO 20

(2) The following change must be made to use the DMF1 disk controller.

This change disables the driver's use of the extended address hardware

present on the DMF2 controller.

change the byte(s) at DE65 from 8A 16 to 8A 16

DE67 B7 FO 40 12 12.12

(3) The following change must be made to use the DC2 disk controller.

This change causes the head load timer to be used for all disk

operations. (The drivers normally use the head load timer only after

seek operations.)

change the byte(s) at DE2F from BADE 1E to _ BA DE 1E

DE32 BA DE 20 8A 04 12

DE8B BA DE 1E BA DE 1E

DE8E BA DE 20 8A 04 12

(4) The following change must also be made to use the DC2 disk

controller. This change disables the driver's use of the drive ready

indication available on the DC3 and DC4 controllers.

change the byte(s) at CB72 from 21 10 to 20 10

CB74 8E 49 B3 8E 49 B3

CBB2 21 DO 20 DO

CBB4 8E OB OE 8E OB OE

(5) The following change must be made to use DC2 disk controllers or DC3

disk controllers. This change disables the driver's use of the double

density hardware present on the DC4 controller.

change the byte(s) at DF62 from 21 14 to 20 14

DF64 A7 E2 A7 E2

(6) The following change must be made to use the Shugart SA-400, 5-inch

drives. This change increases the amount of time allowed for a step to

complete.

change the byte(s) at DF39 from 86 18 to 86 1B

DF3B B7 EO 18 B7 £0 18

CB15 86 08 86 0B
~ CB17 B7 £0 18 B7 EO 18

FLEX™ is a trademark of Technical Systems Consultants

SWTPC MODIFICATION--APPLICATION NOTICE AN #113

Product: FLEX 2.6 DOS
Date: February 26, 1980

Configuring FLEX 2.6 for Computers with MP-B3 Motherboards

(69A, 69K computers, not S/09 Computers)

FLEX 2.6 may incorrectly auto configure on computers with MP-B3

motherboards by indicating the presence of an internal interval timer.

This can be checked by running the SBOX utility contained on the FLEX

2.6 disk. If the utility responds with:

-- Interval Timer = Yes

then the SBOX utility must be used to set the Interval Timer response to

NO. This must be done even if the system has an optional MP-T interrupt
timer plugged on to the system. The timer configurator of the SBOX

utility is concerned with the presence of the 6840 type timer which is

standard on $/09 computers rather than the optional MP-T timer board.

S/09 computers are the only ones at the time of this writing that should

respond with "Interval Timer = Yes" response.

To set the Interval Timer response to NO, enter the following:

SBOX, TIMER=NO

The SBOX command will change and confirm that the timer parameter
has been properly set.

+++SBOX

SWTPC Configurator -- Version 2.1
-- Memory Size = _K
-- I/0 Port Size = 16
-- CPU Clock Rate = 1 MHz
-- Power Line Frequency = Hz
-- Extended Addressing = No
-- Interval Timer = No
-- Real Time Clock = No
-- Upper Case Only = Yes

If the Interval Timer parameter is not properly set as outlined

above the P command and printer spooling will not function correctly.

The FLEX™ Disk Operating System

Technical Systems Consultants, Inc.

The FLEX™ Disk Operating System
System Documentation

CONTENTS

General Notes

The FLEX™ User's Manual

The FLEX™ Advanced Programmer's Guide

General Notes.

Technical Systems Consultants, Inc.

GENERAL NOTES

This section contains suggestions on getting FLEX™ 9.0 up on your system
and on compatibility with your existing hardware and software. This

manual assumes you already have a working disk system and are familiar

with the basics of floppy disk systems such as proper disk handling
techniques, inserting and removing disks from the drives, etc.

One important point should be made in regard to getting FLEX “up and

running". You receive only one disk and it is crucial that you protect
this disk with your life. If you take the following steps, you might
save yourself a lot of headaches and additional expense:

1) Write-protect the FLEX disk before you ever insert it into a drive.

Consult your disk system hardware manual or the FLEX User's Manual

for details on write-protecting a disk.

2) Boot up the FLEX system and once running copy all files from the

original FLEX disk to a new disk. Next perform.a LINK command to

FLEX.SYS on this new disk.

3) Now remove the original FLEX disk and store it in a safe place. It

should never be used again unless you wipe out.all the new FLEX

disks you make and need to repeat this procedure. Use the new FLEX

disk you have made for all future disk work.
—

FLEX™ is a trademark of Technical Systems Consultants,Inc.

FLEX General Notes

HARDWARE REQUIREMENTS

This section discusses the hardware requirements for running FLEX 9.0.

This version is setup for the Southwest Technical Products Corporation's
disk systems: the MF-68 or MF-69 5-inch minidiskette, the DMAF1 or DMAF2

8-inch diskette, and the CDS-1 Winchester disk unit.

MemoryRequirements
The FLEX disk operating system itself resides in the range of $C000 to

$DFFF. This means you will need 8K of memory starting at $C000. You

should be certain your particular system can accept memory in this

region.

You must also have “User Memory" (RAM) starting at location $0000 and

running continuously up from there. The more user memory you have in

your system the better off you will be. This is because you will be

able to run larger programs and because software which works with files
that are larger than memory can hold (such as the editor or sort/merge)
will operate more efficiently and quickly. Although FLEX resides at

$C000, certain of its commands utilize the lower end of this user RAM

space. A minimum of 12K of RAM is required for such purposes.

Monitor ROM

As sold, this version of FLEX requires the S-BUG monitor ROM from SWTPc

or equivalent). FLEX 9.0 has its own internal terminal I/0 routines,
so S-BUG's are not used. These routines assume an ACIA at location

$E004. S-BUG is required, however, for setting up interrupt vectors.

There are two exceptions to this ROM requirement. The first is that the

interrupt vectors need not be set if no program will use interrupts.
Note that many programs such as printer spooling, the SWTPc Editors,
etc., do make use of interrupts. Thus if you did not require printer
spooling or editing you would not require any monitor ROM at all except
for booting the system up and to jump to when exiting FLEX. The second

exception is to make use of the user adaptable version of FLEX which is

supplied on disk along with the standard version. See ‘Adapting FLEX to
Custom Monitors’ for details.

Printer Spooling

FLEX 9.0 Version 2.6 supports printer spooling which allows you to list
a file (or files) on a line printer at the same time as you perform
other FLEX operations such as editing, assembling, running BASIC, etc.

In order to do this, FLEX requires an S/09 computer system, or an MP-T

interrupt timer board on 1/0 port #5 for /09, 69/A and 69/K computer
systems.

FLEX General Notes

DISK COMPATIBILITY

Disks created under 6809 FLEX 9.0 are compatible with those created
under 6800 FLEX 1.0 on the 8" drives or 6800 FLEX 2.0 on the 5" drives.
The reverse is also true, meaning that FLEX 9.0 can read disks created

by one of those 6800 FLEX systems. This means that transferring text

files will require nothing more than copying with the COPY command. In

fact it is not even necessary to put the files on a new disk. As long
as a disk is being used for work files only (no disk command files) it

may be used interchangeably.

The one place where the disks are different is in the bootstrap loader
which the NEWDISK command places on track 0 when a disk is initialized.

Obviously the loader must be different for 6800 and 6809. This simply
means that a disk initialized with the 6809 NEWDISK. command cannot be

used to boot 6800 FLEX and vice versa.

The new double-density system is an exception to all the above. It

cannot be used to read disks created by the original 6800 single-density
system. Any disks, however, created as single-density. with the new

double-density version of NEWDISK (done by answering 'N' to the prompt
‘Double-Sided Disk?') can be read on either a single or double density
system. This is because the new double-density NEWDISK writes FF's in

"certain gap areas whereas the old single-density NEWDISK wrote 00's.

The single-density controller board (which uses the Western Digital
1771) can read either type, but the double-density board (which uses the
Western Digital 1791) can only read the type with FF's.

SOFTWARE COMPATIBILITY

6809 object code is NOT at all compatible with 6800 object code. This

means you cannot run binary command files from a 6800 system on a 6809

system. Since 6809 FLEX can read a 6800 FLEX disk and vice versa, you
must be careful not to execute a 6800 command in a 6809 system and

again, vice versa.

Where the 6809 and 6800 ARE compatible is in the source code. Thus, if

you have the source listing for a 6800 program on disk, it can be

reassembled by the 6809 assembler to produce executable 6809 object
code. Of course if the program calls any routines from FLEX, these

addresses will have to be changed since 6809 FLEX resides at $C000(6800
FLEX is at $A000).. This is usually a matter of simply changing all

occurrences of ‘'$A' to '$C' and all ‘$B’ to '$D‘ with the editor.

FLEX General Notes

ADAPTING FLEX

The FLEX 9.0 disk supplied has two copies of the FLEX object code. One

is called FLEX.SYS and is ready to boot up with SWTPc disk hardware.

The second is called FLEX.COR which represents the CORe or main body of

FLEX. It differs from the bootable form of FLEX in that it does not

have any terminal or disk 1/0 routines built in. This allows the user

to modify these 1/0 drivers, if desired, to produce a customized version

of FLEX. Note that in order to produce this customized version you must

have FLEX up and running so you will need the bootable version

(FLEX.SYS). The customized terminal and disk I/0 routines are supplied
in two packages. We will discuss them separately and then examine how

to add them onto FLEX.COR to produce a new, customized, bootable version
of FLEX.

The CUSTOM I/0 DRIVER PACKAGE

This package allows the user to alter the functioning of the terminal

1/0 and the functioning of printer spooling. Nine routines and two

interrupt vectors are set up in this package. There is a space reserved

for these routines beginning at location $D370 and ending at $D3E6. The

address of these 11 items must be setup in a jump table found at

locations $D3E7 thru $D3FB. A copy of the Custom I/0 Driver Package
used to produce FLEX.SYS is included at the end of the General Notes

section. Use it as a guide for writing your own.

A description of each routine and vector follows.

INCH
The address of the input character routine should be placed at $D3FB.

This routine should get one input character from the terminal and return

it in 'A' with the parity: bit cleared. It should also echo the

character to the output device. Only ‘A' and the condition codes may be

modified.
7 ,

OUTCH .

.
.

The address of the output character should be placed at $D3F9. This

routine should output the character found in 'A' to the output device.

No registers should be modified except condition codes.

STAT
|

|

:

The address of the STAT routine should be placed at $D3F7. This routine
checks the status of the input device. That is to say, it checks. to see

if a character has been typed on the keyboard. If so, a Not-Equal
condition should be returned. If no character has been typed, an Equal
to zero condition should be returned. No registers may be modified

except condition codes.

TINIT

The address of the terminal initialization routine should be placed at

$D3F5. This routine performs any necessary initialization for terminal

1/0 to take place. Any register may be modified except 'S'.

FLEX General Notes

MONITR

This is the address to which execution will transfer when FLEX is
exited. It is generally the reentry point of the system's monitor ROM.
The address should be placed at $D3F3.

TMINT

The address of the timer initialization routine should be placed at
$D3F1. This routine performs any necessary initialization for the

interrupt timer used by the

printerspooling process. Any register may
be modified except 'S'.

TMON
The address of the timer on routine should be placed at $D3EF. This
routines "turns the timer on" or in other words starts the interval IRQ
interrupts. Any registers execpt ‘S' may be modified.

TMOFF

The. address of the timer off routine should be placed at $D3ED.‘This
routine "turns the timer off" or in other words stops the interval IRQ
interrupts. Any registers except 'S' may be modified.

IRQVEC
The IRQ vector jis an address of a two byte location in RAM where FLEX

can stuff the address of its IRQ interrupt handler routine. In other

words, when an IRQ interrupt occurs control should be transferred to the
address stored at the location specified by the IRQ vector. This IRQ
vector location (address) should be placed at $D3EB.

SWIVEC

The SWI3 vector is an address of a two byte location in RAMwhere FLEX

can stuff the address of its SWI3 interrupt handler routine. In other
words, when an SWI3 interrupt occurs control should be transferred to

the address stored at the location specified by the SWI3 vector. This
SWI3 vector location (address) should be placed at $D3£9.

IHNDLR

The Interrupt Handler routine is the one which will be executed when an

IRQ interrupt occurs. If using printer spooling, the routine should
first clear the interrupt condtion and then jump to the ‘change process’
routine of the printer spooler at $C700. If not using printer spooling,
this routine can be setup to do whatever the user desires. If it is

desirable to do both printer spooling and have IRQ's from another device

(besides the spooler clock), this routine would have to determine which
device had caused the interrupt and handle it accordingly.

The address
of this rout ine should be placed at $D3E7.

FLEX General Notes

The CUSTOM DISK DRIVER PACKAGE

This package supplies all the disk functionsrequired by FLEX. There

are eight routines in all:

READ Reads a single sector

WRITE Writes a single sector

VERIFY Verifys a single sector

RESTORE Restores the head to track 0

DRIVE Selects the desired drive

CHECK Checks a drive for a ready condition

QUICK Same as CHECK but with no delay
INIT Initializes any necessary values

WARM Does any Warm Start initialization

These routines and what is required of them are decribed in the Advanced

Programmer's Guide in the section titled 'DISK DRIVERS'. There is a

jump table which contains the address of all these routines at $DE00.

This table is as follows:

DEOO JMP READ

DEO3 JMP WRITE

DE06 JMP VERIFY

DEO9 JMP RESTOR

DEOC JUMP DRIVE

DEOF JMP CHECK
DE12 JMP QUICK
DE15 JUMP INIT

DE18 JMP WARM

Immediately following this jump table there is a space for the disk

driver routines. In the general case this space would start at $DE1B

and run through $DFFF. In the SWTPc system with S-BUG installed, that

entire space is not available due to the fact that S-BUG uses RAM in the

area of $DFAO to $DFFF for variables and stack. Thus the driver routine

area is limited in this case to $DE18 through $DF9F.

The actual source listings for the SWTPc drivers are not included, but a

skeletal Custom Disk Driver Package is included at the end of this

section which should assist you in writing your own package.

PUTTING THE CUSTOM FLEX TOGETHER

Once you have written and assembled a Custom 1/0 and Custom Disk Driver

packages, you are ready to append them to the core of FLEX (FLEX.COR) to

produce a new, bootable version. This is done with the APPEND utility
if FLEX, but before we get into that there is a very important point
which must be covered.

k IMPORTANT ***

FLEX General Notes

The copy of FLEX on disk is much like any other standard binary file.
IT MUST HAVE A TRANSFER ADDRESS IN ORDER TO WORK! It is also important
to note that unlike other binary files FLEX can have ONLY ONE transfer
address and it MUST BE THE LAST THING IN THE FILE! The simplest way of

getting that transfer address into the file is by use of the END
statement in the assembler. We recommend you put a transfer address on

the END statement of the Custom I/0 Driver Package and make sure it is
the last thing in the final FLEX file.

Assuming you have put a transfer address on the Custom I/0 Driver

Package with an end statement of the form:

END $CD00

you can now create a new version of FLEX by appending the custom disk
drivers and custom I/0 drivers onto FLEX.COR. You should use the APPEND

command for this purpose as shown:

+++APPEND FLEX.COR DRVRS.BIN CUSTOMIO.BIN NEWFLEX.SYS

This command assumes the object file you created for the Custom Disk

Drivers jis called DRVRS.BIN and the Custom 1/0 Drivers are in a file

called CUSTOMIO.BIN. The new, custom version of FLEX is called
NEWFLEX.SYS. In order to boot up this NEWFLEX.SYS you must link it with

the LINK command (see the FLEX User's and Advanced Progammer's Manuals).
The command would be of the form:

+++LINK NEWFLEX.SYS

The disk containing your newly made and linked FLEX can now be booted

with the normal boot procedure.

SKELETAL DISK DRIVER PACKAGE

DEOO

DEOO 7E

DEOQ3 7E
DEO6 7E
DEO9 7E

DEOC 7E
DEOF 7E
DE12 7E.
DE15 7E

DE187E

DE23
DE28
DE2D

DE31

DE35
DE39
DE3F
DE1B°

DE1F

*

+

Fe

7-18-79TSC 6809 XASMB PAGE 1

SKELETAL 6809 DISK DRIVER PACKAGE

TECHNICAL SYSTEMS CONSULTANTS,INC
BOX 2574

WEST LAFAYETTE, INDIANA 47906

THE DRIVER ROUTINES PERFORM THE FOLLOWING
1. READ SINGLE SECTOR ~ DREAD
2. WRITE SINGLE SECTOR - DWRITE
3. VERIFY WRITE OPERATION ~ VERIFY
4. RESTORE HEAD TO TRACK 00 - RESTOR

DRIVE SELECTION - DRIVE
6. CHECK READY - DCHECK

7. QUICK CHECK READY - DQUICK
8. COLD START INITIALIZATION - DINIT

+

te
eH
HH
HO

oie

+e

e+

ee

9. WARM START INITIALIZATION - DWARM

SYSTEM CONSTANTS

THIS SPACE IS WHERE ANY NECESSARYEQUATESMIGHT
BE PLACED, SUCH AS DISK CONTROLLER REGISTER

LOCATIONS, SECTOR LENGTH, ETC.

KIKEKKREKERKEKRKEKKERERERIEREEAKRERAERREERKRAERKEER AEREREREREREREKK

* JUMP TABLE

DREAD

DWRITE
DVERFY

RESTOR

DRIVE

DCHECK

-DQUICK
DINIT

_ DWARM

ORG

JMP

JMP

JMP

JMP

JMP
JMP

JMP

JMP

JMP

$DE00

READ

WRITE

VERIFY

RST

DRY

CHECK

QUICK
INIT

WARM

HEKKKEKRKEKEREKRKEEAKKERREEKKEARERERE REE REE EERERERKERRERREKEEREER

SKELETAL DISK DRIVER PACKAGE

DE1B

DEIC

DE1D
DE1E

DE1F

DE20

DE21

DE22

DE23

DE24
DE25
DE26

DE27

DE28

DE29
DE2A

DE2B
DE2C

12

12

39

12

12

39

12

12
12

12

39

12

12

12
39

7-18-79 TSC 6809 XASMB PAGE 2

KIRKI KI III III IIIA III KIKI KIKI IKI IAIIIAIAI IIIA IIIA IIR

* VARIABLE STORAGE

* IF ANY VARIABLES ARE REQUIRED, THEY MIGHT BE PLACED
* HERE. THIS MIGHT INCLUDE VARIABLES LIKE CURRENT
* DRIVE, CURRENT TRACK FOR EACH DRIVE, OR TEMPORARY
* STORAGE LOCATIONS.

HRKKKK KEKE KKK KIKI KAKIIKEE KER ERR ERRREREER

* INIT
x

* INITIALIZES THE NECESSARY DRIVER VARIABLES.
—

INIT NOP THIS ROUTINE IS CALLED

NOP DURING FMS INITIALIZATION

NOP AT COLD START

RTS

* WARM
*

* WARM START INITIALIZATION

WARM NOP THIS ROUTINE IS CALLED

NOP DURING FMS INITIALIZATION

NOP AT WARM START

RTS

* READ
*

* READ ONE SECTOR

READ NOP READS THE SECTOR POINTED

NOP TO BY TRACK IN ‘A‘

NOP AND SECTOR IN ‘B'.

NOP 'X' POINTS TO FCB.

RTS

* WRITE
*

* WRITE ONE SECTOR

WRITE NOP WRITES THE SECTOR POINTED

NOP TO BY TRACK IN ‘A’

NOP AND SECTOR IN 'B'.

NOP 'X' POINTS TO FCB.

RTS

SKELETAL DISK DRIVER PACKAGE
_ 7-18-79 TSC 6809 XASMB PAGE 3

DE2D

DE2E
DE2F

DE30

DE31
- DE32

DE33

DE34

DE35

DE36
DE37

DE38

DE39

DE3A
DE3B

DE3C

DE3D
DE3E

DE3F

DE40
DE41

DE42

DE43
DE44

12

12

39

12
12
12

39

12

12

39

12

12

12

39

12

12

12

12

* VERIFY
*

* VERIFY LAST TRACK WRITTEN

VERIFY NOP THE SECTOR JUST

NOP WRITTEN IS VERIFIED.

NOP NO PARAMETERS ARE SUPPLIED.

RTS

* RST
*

* RST RESTORES THE HEAD TO 00

RST NOP HEAD RESTORED TO TRACK

NOP ZERO ON DRIVE POINTED

NOP TO BY FCB AT 'X'.

RTS

* DRV
*

* DRV SELECTS THE DRIVE.

DRV NOP THE DRIVE NUMBER FOUND

NOP IN FCB POINTED TO BY ‘'X'

NOP IS SELECTED.

RTS

* CHECK
*

* CHECK FOR DRIVE READY

CHECK NOP THE DRIVE POINTED TO

NOP BY FCB AT 'X' IS CHECKED

NOP \FOR A READY STATE AFTER

NOP DELAYING FOR DRIVES TO

NOP COME UP TO SPEED.

RTS

* QUICK
*

* QUICK CHECK FOR READY

QUICK NOP THE DRIVE POINTED TO

NOP BY FCB AT 'X' IS CHECKED

NOP FOR READY STATE WITHOUT

NOP DELAYING FOR DRIVES TO

NOP COME UP TO SPEED.

RTS

END

CUSTOM 1/0 DRIVER PACKAGE

D3E7

D3E7D3CB
D3E9 DFC2
D3EB DFC8

D3EDD3C4
D3EF D3BD
D3F1 D3A7

D3F3 F814
D3F5 D370
D3F7 D39C
D3F9 D38B
D3FB D37D

D370

D370 86

D372 A7
D376 86

D378 A7
D37C 39

D37D AG

D381 84
D383 27
D385 A6

D389 84

13
OF

OF

oF

01

OF

7F

C700

-D3E5

D3E5

D3E5

D3E3

*

+

+

*

*

CHPR EQU

7-18-79 TSC 6809 XASMB PAGE

SYSTEM EQUATES

$C700

CUSTOM1/0 DRIVER PACKAGE

CONTAINS ALL TERMINAL I/O DRIVERS AND INTERRUPT
HANDLING INFORMATION.

CHANGE PROCESS ROUTINE

1

KREKKKIKKKRRK AKKKAKIKKKR KIKRERIKRERIKEKERERKKIRRREKEREKK

*

* 1/0 ROUTINE VECTOR TABLE
_o*

*

THNDLR
SWIVEC

IRQVEC
TMOFF
TMON
TMINT
MONITR
TINIT
STAT

OUTCH
INCH

*

ORG

FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB
FDB

FDB

FDB

$D3E7

THND

$DFC2
$DFC8
TOFF
TON

TINT
$F814
INIT
STATUS
OUTPUT
INPUT

TABLE STARTS AT $D3E7

IRQ INTERRUPT HANDLER
SWI3 VECTOR LOCATION

IRQ VECTOR LOCATION
TIMER OFF ROUTINE
TIMER ON ROUTINE
TIMER INITIALIZE ROUTINE

MONITOR RETURN ADDRESS
TERMINAL INITIALIZATION
CHECK TERMINAL STATUS
TERMINAL CHAR OUTPUT
TERMINAL CHAR INPUT ee

eee
Ee

FH

HF

KK

HF

HH

HH

HK

KREKKKERKKERKEERKRREREKREKREERKERKREKREEREKRRERERERKERERERER KKK

* ACTUAL ROUTINESSTART HERE
KEKKKEKKREKEKRKERKEERKEEREKEREREKRER

ORG $D370

* TERMINAL INITIALIZE ROUTINE

INIT LDA ..

STA
LDA

STA
RTS

#$13
~

LACIAC]
#$11
LACTIAC|

RESET ACIA

CONFIGUREACIA

* TERMINAL INPUT CHARACTER ROUTINE

INPUT LDA

ANDA

BEQ
LDA

ANDA

[ACIAC]
#$01
INPUT

LACIAD]
#$7F

GET STATUS

CHARACTER PRESENT?

LOOP IF NOT
GET THE CHARACTER

STRIP PARITY

CUSTOM 1/0 DRIVER PACKAGE 7-18-79 TSC 6809 XASMB PAGE 2

* TERMINAL OUTPUT CHARACTER ROUTINE

D38B 34 802 OUTPUT PSHS A SAVE CHARACTER

D38D A6 9F D3E5 OUTPU2 LDA [ACIAC] TRANSMIT BUFFER EMPTY?

D391 84 02 ANDA #$02
D393 27 ~=F8 BEQ OUTPU2 WAIT IF NOT

D395 35 302 PULS A RESTORE CHARACTER

D397 A7 = 9F_~+D3E3 STA [TACIAD] OUTPUT IT

D39B 39 RTS

* TERMINALSTATUS CHECK (CHECK FOR CHARACTER HIT)

D39C 34 802 STATUS PSHS A SAVE A REG.

D39E A6 9F D3E5 LDA LACIAC] GET STATUS

D3A2 84 =601 ANDA #$01 CHECK FOR CHARACTER
D3A4 35 8602 PULS A RESTORE A REG.

D3A6 39 RTS

* TIMER INITIALIZE ROUTINE

D3A7 BE 03E1 TINT LDX _TMPIA GET PIA ADDRESS

D3AA 86 =FF LDA #SFF
D3AC A7 884 STA 0,X
D3AE 86 8 3C LDA #$3C
D3B0 A? =<O1

.

- STA 1,X
D3B2 86 8F LDA #$8F
D3B4 A7 884 STA 0,X
D3B6 A6 = 84 LDA 0,X
D3B8 86 §6©6.330 LDA #$3D
D3BA A7_ Ol STA 1,X
D3BC 39 RTS

* TIMER ON ROUTINE

D3BD 86 §604 TON LDA #$04 TURN ON TIMER

D3BF A7 9F D3E1 STA LTMPIA]

D3C339 RTS

* TIMER OFF ROUTINE

D3C4 86 = OF TOFF LDA #$8F TURN OFF TIMER

D3C6 A7 =F _~D3E1 STA [TMPIA]
D3CA 39 RTS

* IRQ INTERRUPT HANDLER ROUTINE

D3CB A6 «OF D3E1 IHND LDA [TMPIA] RESET INTERRUPTS

D3CF 7E C700 JMP CHPR GO TO SPOOLER

CUSTOM I/0 DRIVER PACKAGE

D3E1

D3E1 E012

D3E3 £005

D3E5 E004

7-18-79 TSC 6809 XASMB PAGE

* ACTA AND PIA ADDRESSES FOR SUPPLIED ROUTINES

TMPIA

ACTAD

ACTIAC

ORG

FDB

FDB

FDB

$D3E1

$E012
$E005
$£004

TIMER PIA ADDRESS

ACIA DATA REG. ADR.

ACTA CONTROL REG. ADR.

* END STATEMENT HAS FLEX TRANSFER ADDRESS!

END $CD00

3

FLEX User’s Manual

Technical Systems Consultants, Inc.

FLEX User's Manual

Copyright © 1979 by
Technical Systems Consultants, Inc.

PO Box 2574
West Lafayette, Indiana 47906

All Rights Reserved

-i-

COPYRIGHT NOTICE

This entire manual and documentation is provided for

personal use and enjoyment by the purchaser. The

entire contents have been copyrighted by Technical

Systems Consultants, Inc., and reproduction by any

means is prohibited. Use of this manual, or any part
thereof, for any purpose other than single end use is

strictly prohibited.

-ii-

PREFACE

The purpose of this User's Guide is to provide the user of the FLEX
Operating System with the information required to make effective use of
the available system commands and utilities. This manual applies to
FLEX 9.0 for full size and mini floppy disks. The user should keep this
manual close at hand while becoming familiar with the system. It is
organized to make it convenient as a quick reference guide, as well as a

thorough reference manual.

~iii-

CHAPTER 1

I.

II.

IIl.

IV.

V.

Vi.

CHAPTER 2

“TABLEOF CONTENTS

Intoduction

System Requirements
Getting the System Started
Disks Files and Their Names

Entering Commands

Command Descriptions

I. Utility Command Set (UCS)

APPEND

ASN

AR

BUILD

CAT
COPY

CA4MAT

CLEAN
DATE

DELETE

ECHO

EXEC

FIX

FIND

JUMP

LINK

LIST

L

MV

MIRROR

NEWDISK

4%

2

~iv-

Page

NRe js

2

°

e

°

e

*

e

a

o

e

e

e

e

NE
WNHRPNEDU
BWDH
HR
WN
HW

NY

WHR
EDR
DOH
NERO
ONE
WD
Fe

WUNMOBZAASSMOMADAMMMOUNNNND
PS

pp

.

e

°

°

AND
DW

wo
DO

td

TABLE OF CONTENTS

CHAPTER 2. (continued)

CHAPTER 3

I.

II.

III.

IV.

Vv.
VI.

VII.

VIII.

IX.
Xx.

XI.

XII.

CHAPTER 4

SBOX

SP

STARTUP

SUM

TTYSET

TOUCH

TIME

T

USEMF

UCAL

Disk Capacity
Write Protect

The 'RESET' Button

Notes on the P Command

Accessing Drives Not Containing a Disk

System Errors Numbers

System Memory Map
FLEX Input/Output Subroutines

Booting the FLEX Disk Operating System
Requirements for printer drivers
Parallel and Serial printer drivers

Former P and PRINT.SYS

Command Summary

-_—V—

KM
ESSA
CCOAAHHHOaHNNHPREPWH
BWP
OUR
Ww

Page

e

WWWWWW
WW
WW
WW

e

moO

AIO

BR

WD
BR
Re

ee

4.1

FLEX USER'S MANUAL

I. INTRODUCTION

The FLEX™ Operating System is a very versatile and flexible operatingsystem. It provides the user with a powerful set of system commands tocontrol all disk operations directly from the user's terminal. TheSystems programmer will be delighted with the wide variety of disk
access and file management routines available for personal use.Overall, FLEX is one of the most powerful operating systems availabletoday.

The FLEX Operating System is comprised of three parts, the FileManagement System (FMS), the Disk Operating System (DOS), and the
Utility Command Set (UCS). Part of the power of the overall system liesin the fact that the system can be greatly expanded by simply addingadditional utility commands. The user should expect to. see many more
utilities available for FLEX in the future. Some of the other importantfeatures include: fully dynamic file space allocation, the automatic"removal" of defective sectors from the disk, automatic spacecompression and expansion on all text files, complete user environment
control using the TTYSET utility command, and uniform disk wear due tothe high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programsreside on the system disk and are only loaded into memory when needed.
This means that the set of commands can be easily extended at any time,without the necessity of replacing the entire operating system. ‘Theutilities provided with FLEX perform such tasks as the saving, loading,
copying, renaming, deleting, appending, and listing of disk files.
There is an extensive CATalog command for examining the disk's file
directory. Several environment control commands are also provided.Overall, FLEX provides all of the necessary tools for the user's
interaction with the disk.

* FLEX is a registered trademark of Technical SystemsConsultants, Inc.

-1.1-

FLEX User's Manual

IT. SYSTEM REQUIREMENTS

FLEX requires random access memory from location 0000 through location

2FFF hex (12K). Memory is also required from C000 (48K) through DFFF

hex (56K), where the actual operating system resides. The system also

assumes at least 2 disk drives are connected to the controller and that

they are configured as drives #0 and #1. You should consult the disk

drive instructions for this information. FLEX interfaces with the disk

controller through a section of driver routines and with the operator
console or terminal through a section of terminal 1/0 routines.

IIT. GETTING THE SYSTEM STARTED

Each FLEX system diskette contains a binary loader for loading the

operating system into RAM. There needs to be some way of getting the

loader off of the disk so it can do its work. This can be done by
either hand entering the bootstrap loader provided with the disk system,
or by using the boot provided in ROM if. appropriate to FLEX.

As a specific example, suppose the system we are using has SWTPc's S-BUG

installed and we wish to run FLEX. The first step is to power on all

equipment and make sure the S-BUG prompt is present (>). Next insert

the system diskette into drive 0 (the boot must be performed with the

disk in drive 0) and close the door on the drive. Type "D" on the

terminal if using a full size floppy system or "U" if a min ifloppy
system. The disk motors should start, and after about 2 seconds, the

following should be displayed on the terminal:

FLEX X.X

DATE (MM,DD,YY)?

+++

The name FLEX identifies the operating system and the X.X will be the

version number of the operating system. At this time the current date

should be entered, such as 7,3,79. The FLEX prompt is the three plus

signs (+++), and will always be present when the system is ready to

accept an operator command. The ‘+++’ should become a familiar sight
and signifies that FLEX is ready to work for you!

-1.2-

FLEX User's Manual

IV. DISK FILES AND THEIR NAMES

All disk files are stored in the form of ‘sectors’ on the disk and in
this version, each sector contains 256 ‘bytes' of information. Each
byte can contain one character of text or one byte of binary machine
information. A maximum of 340 user-accessible sectors will fit on a
single-sided mini disk or 1140 sectors on a single-sided full size
floppy. Double-sided disks would hold exactly twice that number of
sectors. Double-density systems will hold more still. The user,
however, need not keep count, for the system does this automatically. A
file will always be at least one sector long and can have as many as the
maximum number of sectors on the disk. The user should not be concerned
with the actual placement of the files on the disk since this is done bythe operating system. File deletion is also supported and all
previously used sectors become immediately available again after a file
has been deleted.

All files on the disk have a name. Names such as the following are
typical:

PAYROLL
INVNTORY
TEST1234
APRIL-78
WKLY~PAY

Anytime a file is created, referenced, or deleted, its name must be
used. Names can be most anything but must begin with a letter (not
numbers or symbols) and be followed by at most 7 additional characters,called ‘name characters'. These 'name characters’ can be any
combination of the letters 'A' through 'Z' or 'a' through 'z', any digit"0' through '9', or one of the two special characters, the hyphen (-) or
the underscore '_', (a left arrow on some terminals).

File names must also contain an ‘extension’. The file extension further
defines the file and usually indicates the type of information contained
therein. Examples of extensions are: TXT for text type files, BIN for
machine readable binary encoded files, CMD for utility command files,and BAS for BASIC source programs. Extensions may contain up to 3 ‘name
Characters' with the first character being a letter. Most of the FLEX
commands assume a default extension on the file name and the user neednot be concerned with the actual extension on the file. The user may at
anytime assign new extensions, overiding the default value, and treat
the extension as just part of the file name. Some examples of file
names with their extensions follow:

APPEND. CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period
+ + The period is the name 'field separator’. It tells FLEX to treat

the following characters as a new field in the name specification.

-1.3-

FLEX User's Manual

A file name can be further refined. The name and extension uniquely
define a file on a particular drive, but the same name may exist on

several drives simultaneously. To designate a particular drive a ‘drive

number' is added to the file specification. It consists of a single
digit (0-3) and is separated from the name by the field separator mt.

The drive number may appear either before the name or after it (after

the extension if it is given). If the drive is not specified, the

system will default to either the 'system' drive or the ‘working’ drive.

These terms will be described a little later.

Some examples of file specifications with drive numbers follow:

0.BASIC
MONDAY.2
1.TEST.BIN

LIST.CMD.1

In summary, a file specification may contain up to three fields

separated by the field separator. These fields are; ‘drive’, ‘name’,
and ‘extension’. The rules for the file specification can be stated

quite concisely using the following notation:

[<drive>.]<name>[.<extension>]
or

<name>[.<extension>][.<drive>]

The '<>' enclose a field and do not actually appear in_ the

specification, and the ‘{]' surround optional items of the

specification. The following are all syntactically correct:

O.NAME.EXT

NAME.EXT.O
NAME EXT
O.NAME

NAME.O

NAME

Note that the only required field is the actual 'name' itself and the

other values will usually default to predetermined values. Studying the
above examples will clarify the notation used. The same notation will

occur regularly throughout the manual.

-1.4-

FLEX User's Manual

V. ENTERING COMMANDS

When FLEX is displaying 't+++', the system is ready to accept a command
line. A command line is usually a name followed by certain parameters
depending on the command being executed. There is no 'RUN' command in
FLEX. The first file name on a command line is always loaded into memory
and execution is attempted. If no extension is given with the file
name, 'CMD' is the default. If an extension is specified, the one

entered is the one used. Some examples of commands and how they would
look on the terminal follow:

++4+TTYSET

+++TTYSET.CMD
+++LOOKUP.BIN

The first two. lines are identical to FLEX since the first would default
to an extension of CMD. The third line would load the binary file
‘LOOKUP.BIN' into memory and, assuming the file contained a transfer

address, the program would be executed. A transfer address tells the
program loader where to start the program executing after it has been
loaded. If you try to load and execute a program in the above manner and
no transfer address is present, the message, 'NO LINK' will be output to
the terminal, where 'link' refers to the transfer address. Some other
error messages which can occur are 'WHAT?' if an illegal file
specification has been typed as the first part of a command line, and
‘NOT THERE' if the file typed does not exist on the disk.

During the typing of a command line, the system simply accepts al]
characters until a 'RETURN' key is typed. Any time before typing the
RETURN key, the user may use one of two special characters to correct

any mistyped characters. One of these characters is the ‘back space'
and allows deletion of the previously typed character. Typing two back
spaces will delete the previous two characters. The back space is

initially defined to be a ‘control H' but may be redefined by the user

using the TTYSET utility command. The second special character is the
Tine ‘delete’ character. Typing this character will effectively delete
all of the characters which have been typed on the current line. A new

prompt will be output to the terminal, but instead of the usual '+++'

prompt, to show the action of the delete character, the prompt will be
'222'. Any time the delete character is used, the new prompt will be
‘222’, and signifies that the last line typed did not get entered into
the computer. The delete character is initially a ‘control X' but may
also be redefined using TTYSET.

~1.5-

FLEX User's Manual

As mentioned earlier, the first name on a command line is always
interpreted as a command. Following the command is an optional list of

names and parameters, depending on the particular command being entered.

The fields of a command line must be separated by either a space or a

comma. The general format of a command line is:

<command>[,<list of names and parameters>]

A comma is shown, but a space may be used. FLEX also allows several

commands to be entered on one command line by use of the ‘end of line’

character. This character is initially a colon (':'), but may be user

defined with the TTYSET utility. By ending a command with the end of

line character, it is possible to follow it immediately with another

command. FLEX will execute all commands on the line before returning
with the '+++' prompt. An error in any of the command entries will

cause the system to terminate operation of that command line and return

with the prompt. Some examples of valid command lines follow:

+H4CAT 1
+4+4+CAT 1:ASN S=1
+4++LIST LIBRARY:CAT 1:CAT 0

As many commands may be typed in one command line as desired, but the

total number of characters typed must not exceed 128. Any excess

characters will be ignored by FLEX.

One last system feature to be described is the idea of 'system' and

‘working’ drives. As stated earlier, if a file specification does not

specifically designate a drive number, it will assume a default value.

This default value will either be the current 'system' drive assignment
or the current ‘working’ drive assignment. The system drive is the

default for all command names, or in other words, all file names which

are typed first on a command line. Any other file name on the command

line will default to the working drive. This version of FLEX also

supports automatic drive searching. When in the auto search mode if no

drive numbers are specified, the operating system will first search

drive 0 for the file. If the file is not found, drive 1 will be

searched and so on. When the system is first initialized the auto drive

searching mode will be selected. At this time, all drive defaults will

be to drive 0. It is sometimes convenient to assign drive 1 as_ the

working drive in which case all file references, except commands, will

automatically look on drive 1. It is then convenient to have a diskette

in drive O with all the system utility commands on it (the ‘system
drive'), and a disk with the files being worked on in drive 1 (the

‘working drive’). If the system drive is 0 and the working drive is 1,
and the command line was:

+4+LIST TEXTFILE

FLEX would go to drive 0 for the command LIST and to drive 1 for the

file TEXTFILE. The actual assignment of drives is performed by the ASN

utility. See its description for details.

-1.6-

FLEX-User's Manual

VI. COMMANDDESCRIPTIONS

There are two types of commands in FLEX, memory resident (those which
actually are part of the operating system) and disk utility commands(those commands which reside on the disk and are part of the UCS).There are only two resident commands, GET and MON. They will bedescribed here while the UCS is described in the following sections.

GET

The GET command is used to load a binary file into memory. It is aspecial purpose command and is not often used. It has the followingsyntax:

GET[.<file name list>]

where <file name list> is: <file spec>[,<file spec>] etc.

Again the '[]' surround optional items. ‘File spec’ denotes a file nameas described earlier. The action of the GET command is to load the fileor files specified in the list into memory for later use. If no
extension is provided in the file spec, BIN is assumed, in other words,BIN is the default extension. Examples: ,

GET,TEST
GET,1.TEST,TEST2.0

where the first example will load the file named 'TEST.BIN' from the
assigned working drive, and the second example will load TEST.BIN fromdrive 1 and TEST2.BIN from drive 0.

MON

MON is used to exit FLEX and return to the hardware monitor system suchas S-BUG. The syntax for this command is simply MON followed by the"RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should enter the
Program at location CD03 hex.

el. 7-

UTILITY COMMAND SET

The following pages describe all of the utility commands currently
included in the UCS. You should note that the page numbers denote the
first letter of the command name, as well as the number of the page for
a particular command. For example, 'B.1.2' is the 2nd page of the
description for the lst utility name starting with the letter 'B'.

COMMONERROR MESSAGES

Several error messages are common to many of the FLEX utility commands.
These error messages and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a
particular command was not found on the disk specified. Usually the
wrong drive was specified (or defaulted), or a misspelling of the name
was made.

ILLEGAL FILE NAME. This can happen if the name or extension did
not start with a letter, or the name or extension field was too long(limited to 8 and 3 respectively). This message may also mean that the
command being executed expected a file name to follow and one was not
provided.

FILE EXISTS. This message will be output if you try to create a
file with a name the same as one which currently exists on the same
disk. Two different files with the same name are not allowed to exist on
the same disk.

SYNTAX ERROR. This means that the command line just typed does not
follow the rules stated for the particular command used. Refer to the
individual command descriptions for syntax rules.

GENERALSYSTEM FEATURES

Any time one of the utility commands is sending output to the terminal,
it may be temporarily halted by typing the ‘escape’ character (see
TTYSET for the definition of this character). Once the output is
stopped, the user has two choices: typing the ‘escape’ character again
or typing 'RETURN'. If the ‘escape’ character js typed again, the
output will resume. If the 'RETURN' js typed, control will return to
FLEX and the command will be terminated. All. other characters are

ignored while output is stopped. :

-2. 1-

APPEND

The APPEND command is used to append or concatenate Files, creating anew file as the result. A specific line or line range of any originfile may be specified.

DESCRIPTION

The general syntax for the APPEND command is as follows:

APPEND, <origin file, [+line range]>, [origin file,[+line range] list],<destination file>

where <origin file> specifies the file(s) to be appended. A line numberor line number range can follow any origin file name. If no line rangeis specied the entire file is used.

The <destination file> should be the last argument and should not existon the disk. If the specified <destination file> exists, APPEND tellsthe user:

Destination file exists
Do you wish to continue?

A "Y" response will delete the contents of the <destination file>. A"N" response wil] terminate the execution of APPEND. All other filesspecified must exist since they are the ones to be appended together.If only two file names are given, the first file will be copied to thesecond file.

If no extension is given, the default is .TXT for all files. Theexception to this is if the first filename given has an extension otherthan .TXT, all other filenames without an extension default to thatfirst extension.

Any type of sequential file may be appended, but it only makes sense toappend files to the same type in most cases. If appending binary fileswhich have transfer addresses associated with them, the transfer addressof the last file of the list will be the effective transfer address ofthe resultant file. All of the original files will be left intact.(Note: Random files may not be appended.)

-A.1.1-

ac

FLEX User's Manual

Examples of APPEND

1. APPEND junk +1-12 filed +80-100 super

will append lines 1 through 12 of JUNK.TXT and lines 80 through 100 of

FILE5.TXT to form the file SUPER. TXT.
(Note: Line number ranges ONLY apply to the file immediately in front of

them. Only one line number range js allowed per specied file.)

2. APPEND doc.asm pat +5-99 hosp

will append the file DOC.ASM and lines 5 through 99 of PAT.ASM to. form

HOSP.ASM. If PAT.ASM did not have 99 lines, all of PAT.ASM that existed

would be copied into HOSP.ASM.

3. APPEND filel.txt file2.txt filel2.txt

will append the file FILE1.TXT and the file FILE2.1XT to form the file

FILE12.TXT.

4. APPEND junk.asm +100-* try.asm

will copy file JUNK.ASM starting at the 100th line into file TRY.ASM.

The file JUNK.ASM will be copied until the end of file is reached.

(The "*" character is useful when the exact number of lines in the file

is not known.)

5. APPEND filel.txt +1-10 file2.txt +1-50 filel +40-90 filed

will append lines 1 to 10 of FILE1.TXT, lines 1 to 50 of FILE2.TXT, and

lines 40 to 90 of FILE1.TXT to form the file FILE9.TXT.

-A.1.2-

ASN

The ASN command jis used for assigning the 'system' drive and the
‘working’ drive or to select automatic drive searching. The systemdrive is used by FLEX as the default for command names or, in general,the first name on a command line. The working drive is used by FLEX as
the default on all other file specifications within a command line.
Upon initialization, FLEX assigns drive #0 as both the system and
working drive. An example will show how the system defaults to these
values:

APPEND ,FILE1,FILE2,FILE3

If the system drive is assigned to be #0 and the working drive is
assigned to drive #1, the above example will perform the following
operation: get the APPEND command from drive #0 (the system drive), then
append FILE2 from drive #1 (the working drive) to FILE1 from drive #1
and put the result in FILE3 on drive #1. As can be seen, the. system
drive was the default for APPEND where the working drive was the default
for all other file specs listed.
Automatic drive searching causes FLEX to automatically scan the readydrives for the file specified. On systems using the 5-inch drives with
either a DC-1 or DC-2 controller, no ready signal is provided by the
drives, thus flex always assumes drives zero and one are ready. If a
drive is selected that does not have a disk inserted, the system will
hang until a disk is placed in the drive or the RESET switch is pressed.
Systems using 8-inch drives, or 5-inch drives with the DC-3 controller
provide a ready signal and drives with no disks inserted are bypassed.

Automatic drive searching causes FLEX to first check drive #0 for the
file specified. If not there or if not ready FLEX will skip to drive
#1. If the file is not found on drive #1 in the 5-inch version, FLEX
gives up and a file not found error results. In the 8-inch version FLEX
continues to search on drives #2 and #3 before reporting an error.

DESCRIPTION

The general syntax for the ASN command is as follows:

ASNT,W=<drive>][,S=<drive>]

where <drive> is a single digit drive number or the letter A. If justASN is typed followed by a "RETURN', no values will be changed, but the
system will output a message which tells the current assignments of the
system and working drives, for example:

+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0

-Ac2.1-

FLEX User's Manual

Some examples of using the ASN command are:

ASN,W=1

ASN,S=1,W=0

where the first line would set the working drive to 1 and leave the

system drive assigned to its previous value. The second example sets

the system drive to 1 and the working drive to 0. Careful use of drive

assignments can allow the operator to avoid the use of drive numbers on

file specifications most of the time!

If auto drive searching is desired, then the letter A for automatic,
should be used in place of the drive number.

Example:
ASN W=A

ASN S=A, W

W

=1
ASN S=A, W=A

-A. 2. 2-

AR

The archive command is used to update selected files on a disk bycopying from one disk to another. This allows only those files that areobsolete to be replaced with newer copies from another disk.

DESCRIPTION

The general syntax of the AR command is:

AR,<input drive>,<output drive>

The selected files are copied from the input drive to the output drive.

The AR command may be thought of as a "copy only if there and morerecent" command. The only files copied from the input drive to theoutput drive are those files that exist on both disks. Further, theCreation date of the file to be copied must be more recent than thecreation date of the file to be replaced.
The volume name and number of both the input and output drives jsdisplayed and the operator is asked if he wishes to continue. An "N"answer will abort processing and return control to the operating system.To continue with the update a "Y" answer is required.
When a file is found which meets the selection criteria, the operator isasked if the file is to be copied. An "N" answer allows processing tocontinue. without copying the file. A "Y" answer causes the file to becopied before continuing. Typing a Carrier Return will abort processingand return control to the operating system.

The prompting used by AR is designed for convenient use with the Y and Ncommands described elsewhere in this manual. In fact, a useful methodfor displaying a catalog of all files which need updating is to use thefollowing command line.

++4+N,AR,0,1

After answering "Y" to the first question, a list of all files whichneed updating will be displayed.
NOTE: Some early versions of the COPY command did not copy the file'screation date, resulting in "creation" dates reflecting the date of thepreceding use of COPY rather than the actual creation date of the file.Attempts to use AR to copy files generated by such a version of COPYwill not be particularly useful since AR depends on the creation datebeing an actual creation date. Any copies of these early versions ofthe COPY command should be replaced with the current version.

The user will find it useful to be familiar with the TOUCH and DATEcommands when using the AR command.

~A.3.1-

BUILD

The BUILD command is provided for those desiring to create small text
files quickly (such as STARTUP files, see STARTUP) or not wishing to usethe optionally available FLEX Text Editing System. The main purpose forBUILD is to generate short text files for use by either the EXEC command
or the STARTUP facility provided in FLEX.

DESCRIPTION

The general syntax of the BUILD command is:

BUILD,<file spec>

where <file spec> is the name of the file you wish to be created. Thedefault extension for the spec is TXT and the drive defaults to theworking drive. If the output file already exists the question "MAY THE
EXISTING FILE BE DELETED?" will be displayed. A Y response will deletethe existing file and build a new file while a N response will terminatethe BUILD command.

After you are in the ‘BUILD’ mode, the terminal will respond with an
equals sign ('=') as the prompt character. This is similar to the Text
Editing System's prompt for text input. To enter your text, simply typeon the terminal the desired characters, keeping in mind that once the‘RETURN' is typed, the line is in the file and can not be changed. Anytime before the 'RETURN' is typed, the backspace character may be used
as well as the line delete character. If the delete character is used,the prompt will be ‘???' instead of the equals sign to show that the
last line was deleted and not entered It should be noted that onlyprintable characters (not control characters) may be entered into textFiles using the BUILD command.

To exit the BUILD mode, it is necessary to type a pound sign ('#')
immediately following the prompt, then type 'RETURN'. The file will be
finished and control returned back to FLEX where the three plus signsShould again be output to the terminal. This exiting is similar to thatof the Text Editing System.

-B.1l.1-.

CAT

The CATalog command is used to display the FLEX disk file names in the
directory on each disk. The user may display selected files on one or
multiple drives if desired.

DESCRIPTION

The general syntax of the CAT command is:

CATL,<drive list>]L[,<match list>]

where <drive list> can be one or more drive numbers seperated by commas,and <match list> is a set of name and extension characters to be matched
against names in the directory. For example, if only file names which
Started with the characters 'VE' were to be cataloged, then VE would be
in the match list. If only files whose extensions were 'TXT' were to be
cataloged, then .TXT should appear in the match list. A few specificexamples will help clarify the syntax:

+HCAT

++4CAT,1,A.T,DR
++4CAT,PR
++4CAT,0,1
++4CAT,0,1,.CMD,SYS

The first example will catalog all file names on the working drive or on
all drives if auto drive searching is selected. The second example wil]
catalog only those files on drive 1 whose names begin with 'A' and whose
extensions begin with 'T', and also all files on drive 1 whose namesstart with 'DR'. The next example will catalog all files on the workingdrive (or on all drive if auto drive searching is selected) whose. names

Start with ‘PR’. The next line causes all files on both drive 0 and
drive 1 to be cataloged. Finally, the last example will catalog the
files on drive 0 and 1 whose extensions are CMD or SYS.

During the catalog operation, before each drive's files are displayed, a
header message stating the drive number is output to the terminal. The
name of the diskette as entered during the NEWDISK operation will also

pe displayed. The actual directory entries are listed in the followingorm:

NAME. EXTENSIONSIZE PROTECTION CODE

where size is the number of sectors that file occupies on the disk. If
more than one set of matching characters was specified on the command
line, each set of names will be grouped according to the characters they
match. For example, if all .TXT and .CMD files were cataloged, the TXT
types would be listed together, followed by the CMD types.

In summary, if the CAT command is not parameterized, then all files on
the assigned working drive will be displayed. If a working drive is not
assigned (auto drive searching mode) the CAT command will display files

-C.1.1-

er

FLEX User's Manual

on all on line drives. If it is parameterized by only a drive number,
then all files on that drive will be displayed. If the CAT command is

parameterized by only an extension, then only files with that extension

will be displayed. If only the name is used, then only files which

start with that name will be displayed. If the CAT command is

parameterized by only name and extension, then only files of that root

name and root extension (on the working drive) will be displayed. Learn

to use the CAT command and all of its features and your work with the

disk will become a little easier.

The current protection code options that can be displayed are as

follows:

D File is delete protected (delete or rename prohibited) —

W File is write protected (delete, rename and write prohib ited)
(blank) No special protection

-C.1.2-

COPY

The COPY command is used for making copies of files ona disk.
Individual files may be copied, groups of name-similar files may be
copied, or entire disks may be copied. The copy command is a very
versatile utility. The COPY command also re-groups the sectors of a
file in case they were spread all over the old disk. This regrouping
can make file access times much faster. It should be noted that before
copying files to a new disk, the disk must be formatted first. Refer to
NEWDISK for instructions on this procedure.

DESCRIPTION

The general syntax of the COPY command has three forms:

a. COPY,<file spec>,<file spec>
b. COPY,<file spec>,<drive>
c. COPY,<drive>,<drive>[,<match list>]

where <match list> is the same as that described in the CAT command and
all _ rules apply to matching names and extensions. When copying files,
if the destination disk already contains a file with the same name as
the one being copied, the file name and the message, "FILE EXISTS DELETE
ORIGINAL?" will be output to the terminal. Typing Y will cause the file
on the destination disk to be deleted and the file from the source disk
will be copied to the destination disk. Typing N will direct FLEX not
to copy the file in question.

The first type of COPY allows copying a single file into another. The
output file may be ona different drive but if on the same drive the
file names must be different. It is always necessary to specify the
extension of the input file but the output file's extension will default

te that of the input's if none is specified. An example of this form of
OPY is:

+++COPY 0. TEST. TXT,1. TEST25

This command line would cause the file TEST. TXT-on drive 0 to be copied
into a file called TEST25.TXT on drive 1. Note how the second file's
extension defaulted to TXT, the extension of the input file.

The second type of COPY allows copying a file from one drive to another
drive with the file keeping its original name. An example of this is:

+++COPY,O.LIST.CMD,1

Here the file named LIST.CMD on drive 0 would be copied to drive 1. It
is again necessary to specify the file's extension in the file
specification. This form of the command is more convenient than the
previous form if the file is to retain its original name after the
copying process.

-C.2.1-

FLEX User's Manual

The final form of COPY is the most versatile and the most powerful. It

is possible to copy all files from one drive to another, or to copy only
those files which match the match list characters given. Some examples
will clarify its use:

+++COPY,0,1
+++COPY,1,0,.CMD,.SYS
+++COPY,0,1,A,B,CA.T

The first example will copy all files from drive 0 to drive 1 keeping
the same names in the process. The second example will copy only those

files on drive 1 whose extensions are CMD and SYS to drive 0. No other

files will be copied. The last example will copy the files from drive 0

whose names start with 'A' or 'B' regardless of extension, and those

files whose names start with the letters 'CA' and whose extensions start

with 'T'.,to the output drive which is drive 1. The last form of copy

is the most versatile because it will allow putting just the command

(CMD) files on a new disk, or just the SYS files, etc., with a single
command entry. During the COPY process, the name of the file which is

currently being -copied will be output to the terminal, as well as the

drive to which it is being copied.

Copied files will have the same last-altered date and protection mode as

the original file. If it is necessary to change the last-altered date,
the TOUCH command may be used. Similarly, protection may be changed by

using the PROT command.

-C.2.2-

C4MAT

The C4MAT command is used to format the CalComp Marksman hard disk. It
performs a surface verification and format function similar to the
NEWDISK utility.

DESCRIPTION

The general syntax of the C4MAT command is:

C4MAT

This command will initialize the entire surface of the hard disk. It is
important to format the disk initially to build directories and sector
maps. Once initialized, the disk should never need to be reinitialized
unless catastrophic damage occurs (like a wild program writing all over.
the disk). The initialization process destroys all data previously
written on the disk and it is vital that disks with good data not be
reformatted.

When the C4MATprogram is run, it will ask you if you are sure you want
to initialize the disk. If you do, type "Y". C4MAT will then ask for a
volume name, which can be up to eight characters in length. The. volume
name is stored in the disk information sector and is displayed by the
CAT command and others. Be absolutely sure the disk jis not writeprotected when you run the C4MAT program. An initial directory capable
of storing up to 750 files is built upon the disk. The directory will
expand if more than 750 files are placed on the disk.

Due to the large size and high density of the disk, it jis not unusualfor several bad sectors to be found. The program will abort if it
cannot find enough useable free sectors on the disk. All bad sectors
are automatically bypassed.

-C.3.1-

CLEAN

The CLEAN command is used in conjunction with a Remex FD-08 cleaning kitto clean DMAF eight inch disk drive heads.

DESCRIPTION

The general syntax of the CLEAN command jis:

CLEAN [,<drive number>]
where <drive number> js optional and defaults to drive zero. The CLEAN
command will then prompt you to load the cleaning diskette into thespecified drive. When the diskette is in place, the heads are loadedand stepped back and forth over the cleaning surface for thirty seconds.You should then remove the cleaning disk and inspect it for oxidedeposits. If deposits are noted, follow the manufacturers recomendationsfor media replacement. Frequent oxide deposits could indicate defectivedisk heads.

~C.6. 1-

DATE

The DATE command jis used to display or change an internal FLEX date
register. This date register may be used by future programs and FLEXutilities.

DESCRIPTION

The general syntax of the DATE command is:

DATEL,<month,day,year>]

where '‘month' jis the numerical month, ‘day’ is the numerical day and‘year' is the last two digits of the year.

+++DATE 5,2,79 Sets the date register to May 2, 1979

Typing DATE followed by a carriage return will return the last entereddate.

Example:
++4DATE

May 2, 1979

-D.1.1-

DELETE

The DELETE command is used to delete a file from the disk. Its name

will be removed from the directory and its sector space will be returned

to the free space on the disk.

DESCRIPTION

The general syntax of the DELETE command is:

DELETE,<file spec>L[,<file list>]

where <file list> can be an optional list of file-specifications. It is

necessary to include the extension on each file specified. As the

DELETE command is executing it will prompt you with:

DELETE "FILE NAME"?

The entire file specification will be displayed, including the drive
number. If you decide the file should be deleted, type ‘y's otherwise,

any other response will cause that file to remain on the disk. Ifa ‘Y'

was typed, the message ‘ARE YOU SURE?’ will be displayed on the

terminal. If you are absolutely sure you want the file deleted from the

disk, type another 'Y' and it will be gone. Any other character will

leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO WAY TO

GET IT BACK! Be absolutely sure you have the right file before

answering the prompt questions with Y's. Once the file is deleted, the

space it had occupied on the disk is returned back to the list of free

space for future use by other files. Few examples follow:

+++DELETE ,MATHPACK.BIN
++4+DELETE,1. TEST.TXT,O.AUGUST.TXT

The first example will DELETE the file named MATHPACK.BIN from the

working drive. If auto drive searching is selected, the file will be

deleted from the first drive it is found on. The second line will

DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive 0.

There are several restrictions on the DELETE command. First, a file
that is delete or write protected may not be deleted without first
removing the protection. Also a file which is currently in the print

queue (see the PRINT command) can not be deleted using the DELETE

command.

-D.2. 1-

ECHO

The ECHO command is a utility that permits messages and controlcharacters to be sent to the terminal device. It is particularly usefulwhen used inside of EXEC files.

DESCRIPTION

The general syntax of the ECHO command is:

ECHO,<string>
where string jis any string of printable characters or control escapesequences terminated by a carriage return or an end of line character.Some examples of the echo command are:

ECHO,THISIS A MESSAGE
ECHO,\G THE FILE HAS BEEN DELETED!

The first example types "THIS IS A MESSAGE" on the terminal.The secondexample uses a control escape sequence to send a bell character (Control"G") to the terminal, followed by the message “THE FILE HAS BEENDELETED!".

Control escape Sequences provide a mechanism to send control charactersto the terminal device, for example, a bell character may be sent toprovide an audible alert signal. These sequences begin with a backslashcharacter followed by an upper case letter or symbol. The ‘control'value of the symbol is sent to the terminal. For example, the sequence"\G" sends a control-G character. Two other escape sequences availableare "\§" which sends a nul] character (control-shift-P) and "\n" (Lowercase "N") which sends a carriage return, line feed to the terminal.

. -E.1.1-

EXEC

The EXECute command is used to process a text file as a list of

commands, just as if. they had been typed from the keyboard. This is a

very powerful feature of FLEX for it allows very complex procedures to

be built up as a command file. When it is desirable to run this

procedure, it is only necessary to type EXEC followed by the name of the

command file. Essentially all EXEC does is to replace the FLEX keyboard

entry routine with a routine which reads a line from the command file

each time the keyboard routine would have been called. The FLEX

utilities have no idea that the line of input is coming from a file

instead of the terminal.
os

DESCRIPTION

The general syntax of the EX command is:

EXEC ,<file spec>

where <file spec> is the name of the command file. The default

extension is TXT. An example will give some ideas on how EXEC can be

used. One set of commands which might be performed quite often is the

set to make a new system diskette on drive 1 (see NEWDISK). Normally it

is necessary to use NEWDISK and then copy all .CMD and all .SYS files to

the new disk. Finally the LINK must be performed. Rather than having
to type this set of commands each time it was desired to produce a new

system diskette, we could create a command file called MAKEDISK.TXT

which contained the necessary commands. The BUILD utility should be

used to create this file. The creation of this file might go as

follows:

+++BUILD,MAKEDISK
=NEWDISK,1
=COPY,0,1,.CMD,.OV,LOW,.SYS
=LINK,1.FLEX
=#

+++

The first line of the example tells FLEX we wish to BUILD a file called

MAKEDISK (with the default extension of .TXT). Next, the three

necessary command lines are typed in just as they would be typed into

FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS

extensions from drive 0 to drive 1. Finally the LINK will be performed.
Now when we want to create a system disk we only need to type the

following:

+++EXEC,MAKEDISK

We are assuming here that MAKEDISK resides on the same disk which

contains the system commands. EXEC can also be used to execute the

STARTUP file (see STARTUP).

<E.201-

FLEX User's Manual

There are many applications for the EXEC command. The one shown is
certainly useful but experience and imagination will lead you to otheruseful applications.

IMPORTANT NOTE: The EXEC utility is loaded into the upper end of user
memory. This is done by first loading EXEC into the utility command
Space, then calculating the proper starting address so that it wil]reside right up against the end of the user memory space. Next EXEC isrelocated to that location anda new end of memory pointer is set to
just below EXEC. When the EXEC file is finished, if the user has notfurther changed the memory end location, EXEC will reset it to theoriginal value.

-E.2.2-

FIX.

The FIX command is used to modify binary files that are stored on the
disk. Since the FIX command loads the file into an internal buffer, it
is possible to modify binary files that have several segments or that
load into system locations.

DESCRIPTION

The general syntax of the FIX command is:

FIX,<input file name> [,<output file name>]
—

where <input file name> is the name of the file you wish to modify, and
<output file name>, if specified, is the name of the file into which the
modified copy will be written. The default extension for FIX jis «BIN
and the drive defaults to the working drive. If the output file is not

specified, the modified binary file will replace the input file.

When you run the FIX command, the computer will load the binary file
into its internal buffer memory. If for some reason the file cannot be
loaded into memory, an error message is produced and the file is left
unmodified. After the file has been loaded, FIX will respond with a

prompt character, ":", and will then accept one of the following
single-letter commands:

B -- Add a new block of data to the file. This command requires a

pair of addresses specifying the lower and upper bounds of the
block to be added. The block is initially cleared to zeros.

For example, to add a sixteen byte object code block at location
$0700, type :B 0700-070F. Added blocks may be modified with the
memory examine and:change function.

E -- Exit. All data that was modified is written back to the output
file on the disk. The resulting file has all of the object code
blocks that were present in the original file, plus any new

blocks that have been added. There may be exactly one transfer
address in the file, and it will be the last block in the file.
If no output file name was specified, the exit command will
delete the old binary file and write a new file in its place.

L -- Display File Limits. This command will display the transfer
address and the limit addresses of each contiguous block of
object code in the file.

M -- Memory Examine and Change. This command is used to examine or
_

modify a byte in the file. It cannot be used to extend the file
by adding additional bytes. See the detailed description below.

N -- Next line. This command displays the next sixteen bytes of the

binary file. It is normally used after the V or P commands (see
below).

-F.1.1-

i

FLEX User's Manual

P -- Peek at the file. This command allows you specify a single

address and have that address and a_ few surrounding bytes

displayed in a format similar to that of the V command (see

below).

T -- Specify the transfer address. For example to change the

transfer address to $0100, type :T 0100.

U «- Remove the transfer address from the file. See the description
of a binary file in the advanced programmer's guide.

VY -- View a section of the file. This command expects a range of

addresses and displays the contents of the binary tile between

these addresses. The binary code is displayed in ‘both
hexadecimal and ASCII. Any addresses in the range not contained
within the binary file are displayed as a pair of hyphens.

X -- Exit (Give Up). No modified data is written back to the disk.

(The file is left intact.) This command is useful if you have

managed to screw up the file while making modifications.

FIX Memory Examine and Change

The memory examine and change function of fix permits the programmer to

look at and change bytes in a binary file by referencing the address at

which they will load. This function cannot be used to add additional

bytes to the binary tile. If you need to add data, use the "B" command

to create the new bytes, and then use the memory command to change them.

1.) Enter the "M" command followed by the four digit address of the

byte you wish to examine or change. The computer will display

the address followed by the data found in the byte. If no such

byte exists in the binary tile, a question mark will be shown.

2.) At this point the user has the option of advancing, either

forward or backward, to the next memory location, changing the

data stored at the displayed address and advancing to the next

location, or of exiting the examine and change function.

a.) To display the next sequential address and data, type a

space.

b.) To display the previous address and data, type the

up-arrow, "A".

c.) To change the data stored at the displayed location simply

enter the new data as two hexidecimal digits. If a non-hex

value such as "30" is entered the data will remain

unchanged and the memory change function will step to the

next sequential! address.

-F.1.2-

FLEX User's Manual

d.) If a delete character (control-X) or a backspace character
(control-H) is typed, the current address and data is
redisplayed.

e.) To exit the Memory txamine and Change function, type a

carriage return.

-F.1.3-

FIND

The FIND command searches for a specified text pattern in one or more
files and outputs the lines that contain the pattern.

DESCRIPTION

The general syntax of the FIND command is:

FIND [,+<option(s)>]»pattern [,<filename(s)>]

where <options> designate the options to be used by FIND. The pattern
is a collection of characters, some of which have special meanings. If
no filename is given, standard input is assumed. By default, lower case
letters in the pattern match only lower case letters in the file being
searched, and upper case letters in the pattern match only upper case
letters in the file.

OptionsAvailable:

y
~ all lower case letters in pattern will match both the upper and the

lower case letters in the file being searched. (NOTE: This option
does not affect upper case letters in the pattern; they only match
upper case letters in the text being searched.)

Example: find +y "and" filel
will match "and", "And", "AND", and so on.

ec - the output of matching lines will be suppressed. A count of the
matching lines for each file searched will be output.

Example: find +e "and" file2.txt
would produce:
5 matching lines in file: file2.txt

Pattern:

A group of characters have been assigned special meanings, these
characters are called metacharacters. An escape character (\)
preceeding a metacharacter "turns off" the special meaning of that
character. The pattern should be surrounded by quotes, i.e. "pattern",
in order to match on imbedded spaces.

Metacharacters

\ - The escape character. When it is used before a metacharacter,
it removes the special meaning from the character.

2 = Matches any character except a newline.

~-F.26 1-

FLEX User’s Manual

<o- Matches at the beginning of lines only. The "<" character

is special only if it is the first character .in the pattern

string. “ee

> = Matches at the end of lines only. The "<" character is

special only if it is the last character in the. pattern

string.

& - Conjunction character. Matches if the subpattern before the

"s&s" character and the subpattern after the "&" character are

both present in the line being searched.

(str|str) - Alternation sequence. A match will be found if either

string occurs in the line being searched. Note that these

are simple character strings, metacharacters other than the

"|" character will be treated as regular characters.

Explaination of Character Classes

Syntax for character class:

[list/range of characters]

Syntax for negation of character class:

{! list/range of characters]

A character class is a text pattern that matches on any single character

from the bracketed list of characters. Character classes can consist

of valid ranges such as "A-Z", "b-f£", or "0-8". They also can consist

of a list of characters, or they can be combination of both a range and

a list. A character range such as "A-G" is internally expanded and will

match on "“ABCDEFG", in the line being searched. A negation of a

character class matches on any character not contained in the character

class.

Some examples:

{[A+Z] will match on any upper case letter.

{a-z] will match on any lower case letter.

(If y flag is in use, it will match both

upper and lower case letters.)

{0-9} will match on any digit.
[!a-f] will match on any character except a, b, c, d, e, or f-

{aeiou] will match on any lower case vowel.

{aAbB}] will match on the characters: a, A, b, and B.

(NOTE: If the y flag is in use, the character class [a-z] will match

upper and lower case letters, the character class [A-Z] will match only

upper case letters (as always).)

~F.2.2-

FLEX User’s Manual

Examples and Further Explanations of Metacharacters

Il. find "?oad" filel will search filel.txt for the pattern "?oad",
where "?" can be any character but a newline. It would match

"coad","load","road",... And it would produce output like:

File: filel

5 The road was very wet.

2. find "<int" filel.asm will look for "int" at the begining of every
line in filel.asm.

3. find "<single>" filel will look for "single" on a line by itself in

filel.txt.

4. find [A-Z][a-z] file2 will match a two letter sequence of an upper

case letter and a lower case letter in file2.txt. (Such as the "Th" in

"This is a test sentence.")

5. find un(happy|lucky) file3 will match the word "unhappy" or the

word "unlucky" in file3.txt.

6. find is&it file3 will match lines containing both "is" and "it".

The words can occur in any position in a line. It would match on all of

the following lines in file3.txt:

This is the story of it.

it is the worst day of my life

His bird ate it.

The kites are his.

7. find "\(2\>3)" file6.asm will match a line containing "(2>3)" in

file6.asm. The "(" and the ">" were escaped to make them regular
characters. The ")" did not need to be escaped because it was not used

in the context of an alternation.

8. find +y [A-Z] [aeiou] [a-z] file9 will match all three-character

sequences in file9.txt with an upper case first character, with an upper

case first character, an upper or lower case vowel as the second

character, and an upper or lower case third character. Since the y flag
was used, the second and third characters matched may be upper or lower

case.

9. find
"

[!A-Z]?2??
"

words.txt contains a negated character class.

It will match. a sequence of characters beginning with a blank, the

second character cannot be an upper case letter (because the character

class was negated), and following that it will match on the next three

characters, except a newline (the ??? part of the pattern), and finally
a blank character after those. It would match on the following strings:
"

that ", "og ",
" " "

BAIS ", eee

-F. 2.3-

FLEX User’s Manual

Additional Notes about FIND

Multiple files can be searched for the same pattern by including the @filenames on the command line. The lines in which the pattern is found
will be output (preceded by a file name before the first line matched in
each file.)

Example: find "int" filel.txt file2.txt File3.txt

File: filel.txt
3 int j,k,count;

10 printf£("n");

File: file2.txt
5 int i,j;

File: file3.txt
8 int kk,11l;

For more complete details about the way most of this program works see

SOFTWARE TOOLS by Brian W. Kernighan and P.J. Plauger, Addison-Wesely
Publishing Co., 1976. Chapter 5: Text Patterns, outlines a find program
that was the basis of this program.

-F.2.4-

The I command allows a utility to obtain input characters from a disk
file rather than the terminal.

DESCRIPTION

The general syntax of the I command is:

I,<file spec>,<command>

where <file spec> is the name of the file containing the characters to
be used as input and <command> is the FLEX utility command that will be
executed and that will receive that input from <file spec>. The default
extension on <file spec> is .TXT.

For example, say that on a startup you always wanted the file DATA.DAT
deleted from the disk without having to answer the "ARE YOU SURE?"
questions. This could be done in the following manner:

+++BUILD,YES
=YY

=H

The first Y will answer the "DELETE 0.DATA.DAT?" question while the
second Y will answer the "ARE YOU SURE?" question.

+++BUILD,STARTUP
=1, YES, DELETE,DATA.DAT
=f

Upon booting the disk, FLEX will execute theSTARTUP file and perform |

the following operation: delete the file DATA.DAT receiving all answers
to any questions from the input file YES.TXT rather than from the
terminal.

See the description of the STARTUP command for more information on
STARTUP.

-I.1.1-

JUMP

The JUMP command is provided for convenience. It is used to start

execution of a program already stored in computer RAM memory.

DESCRIPTION

The general syntax of the JUMP command is:

JUMP,<hex address>

where <hex address> is a 1 to 4 digit hex number representing the

address where program execution should begin. The primary reason for

using JUMP is if there is a long program in memory already and you do

not wish to load it off of the disk again. Some time can be saved but

you must be sure the program really exists before JUMPing to it!

As an example, suppose we had a BASIC interpreter in memory and it had a

‘warm start' address of 103 hex. To start its execution from FLEX we

type the following:

+++J UMP,103

The BASIC interpreter would then be executed. Again, remember that you
must be absolutely sure the program you are JUMPing to is actually
present in memory.

-J.1.1-

LINK

The LINK command is used to tell the bootstrap loader where the FLEX
operating system file resides on the disk. This is necessary each time
a system disk is created using NEWDISK. The NEWDISK utility should be
consulted for complete details on the use of LINK.

DESCRIPTION

The general syntax of the LINK command is:

LINK,<file spec>

where <file spec> is usually FLEX. The default extensionis SYS. Some
examples of the use of LINK follow:

+++ LINK,FLEX
+++LINK,1.FLEX

The first line will LINK FLEX.SYS on the working drive, while the second
example will LINK FLEX.SYS on drive 1. For more advanced details of the
LINK utility, consult the "Advanced ProgrammersGuide".

“L.i.1l-

LIST

The LIST command is used to LIST the contents of text or BASIC files on

the terminal. It is often desirable to examine a files without having
to use an editor or other such program. The LIST utility allows

examining entire files, or selected lines of the file. Line numbers may

also be optionally printed with each line.

DESCRIPTION

The general syntax of the LIST command is:

LIST,<file spec>[,<line range>][,+(options)]

where the <file spec> designates the file to be LISTed (with a default

extension of TXT),and <line range> is the first and last line number of

the file which you wish to be displayed. All lines are output if no

range specification is given. The LIST command supports two additional
options. If a +N option is given, line numbers will be displayed with

the listed file. If a +P option is given, the output will be formatted

in pages and LIST will prompt for "TITLE" at which time a title for the

output may be entered. The TITLE may be up to 40 characters long. This

feature is useful for obtaining output on a printer for documentation

purposes (see P command). Each page will consist of the title, date,

page number, 54 lines of output and a_ hex OC formfeed character.
Entering a +NP will select both options. A few examples will clarify

the syntax used:

+++LIST,RECEIPTS

+++LIST,CHAPTER1,30-200,+NP
+++LIST, LETTER,100

The first example will list the file named "RECEIPTS. TXT’without line

numbers. All lines will be output unless the ‘escape character’ is used

as described in the Utility Command Set introduction. The second

example will LIST the 30th line through the 200th line of the file named

'CHAPTER1.TXT' on the terminal. The hyphen ('-') is required as the

range number separator. Line numbering and page formatting will be

output because of the '+NP' option. The last example shows a special
feature of the range specification. If only one number is stated, it

will be interpretted as the first line to be displayed. All lines

following that line will also be LISTed. The last example will LIST the

lines from line 100 to the end of the file. No line numbers will be

output since the 'N' was omitted.

-L.2. 1-

The L command is used to list a text file onto the terminal or any other

display device.

DESCRIPTION

The general syntax of the L command is:

L, [+<option(s)>],<filename>,([+<option(s)>],<filename>)
where <options> designate the options to be used for the file(s)

following. All options retain the conditions assigned to them until

they are explicitly changed. The options should be .specified in a

string (one after another) with a + or - at the beginning of the string

to denote an options string. Within the options string a + or - can be

used to separate options where the syntax would be unclear otherwise.

This is particularly useful for separating line number ranges from other

options. <Filename> designates the file to be listed. If no extension

is specified on the filename, .txt is the default. A space can also

separate the filenames and options. If no filename is given, standard

input is assumed.

The L utility allows the user to examine entire files or a selected

range of lines of the file(s). Line numbers are printed by default.

Options Available

({num] - signifies use of a decimal integer)

pP- Output will be formatted into pages. This option is

especially useful when the output is directed to a hardcopy

device.

h - Output will be formatted into pages with a heading. The L

program will prompt the user to "ENTER PAGE HEADING: ", at

which time a heading of up to 100 characters may be entered,

with a carriage return indicating end of input. The sequence

CANCL, RETURN will delete any part of the header already

typed in, and make the header blank in the listing.

Backspacing will remove unwanted characters from the header.

(Note: if the folding option is used, the heading will be

truncated to 50 characters.)

n- Line numbering will be suppressed.

t[num] - The output lines will be truncated after the specified number

of characters. No truncation will occur if the t option is

used without a number, or with zero.

-Le 3. l=

FLEX User’s Manual

w[num] -

Folding: the w option specifies the width in characters oftext to be listed. The width defaults to 80 characters if thew option is used without a number, or with zero. (Folding aline means that the specified number of characters are printedand if the input line is longer than that number, a newlinecharacter is output before the rest of the line is listed.This is particularly useful for listing files with long lineson a hard copy device.)

l{num] ~ Left pad/truncate: the 1 option can either pad the outputline with blanks on the left margin, or truncate the inputline on the left.
If the specified number is positive, then that many blankswill be put before the first character in the output line.(If line numbering is enabled, then the blanks are insertedbefore the line numbers in the output lines.)Tf the specified number is negative, then that many characterswill be cut from the beginning of the lines to be output.(Line numbers are output as usual, if line numbering isenabled.)

c{num] - Centronics: ¢ is an option package design to be used whenoutput is directed to a Centronics printer. The c optionturns on paging format and heading.A cl sets the width at 70, useful on the Centronics 737.A c2 sets the width at 120, useful on the Centronics 704.

Line Number Ranges

The line number range option is useful when only part of a file needs tobe listed. It is available in two forms.

Type 1: [num] -

starting line number: the files(s) specified willbe listed Starting at the line number specified.
Type 2: (num]~[num] -

Starting line number ~ ending line number:two numbers separated by a hyphen indicate a line number range.The specified file(s) are each listed Starting at the firstspecified number and the listing is halted at the second specifiednumber.

L.3.2-"

FLEX User’s Manual

Examples and Further Explanations of Options

1. 1 +ht80 filel.txt

will prompt the user for a heading, and then list the FILE: filel.txt
with all output lines truncated after the 80th character, in page
format, and with line numbers.

2e 1 4+nw8015 file5.asm

will list the FILE: file5.asm without line numbers, folding the lines
after the 80th character, and padding the left margin with 5 blanks.

3- 141-50 file4 +1-25 file7

will list lines 1 through 50 of FILE: file4.txt with line numbers.
and lines 1 through 25 of FILE: file7.txt

4. 1+cl file9.old

will list the FILE: file9.old with all special options that are
associated with cl: line numbering, folding at 70, paging, and heading.

5- 1 +w40+10np file6

will list the FILE: file6.txt starting at line number 10, folding
after the 40th character, with no line numbers, and in page format.

-L.3. 3~

MY

The MV command is a file move utility. MV will take any actions
required to generate a file with the specified name on the specified
drive. The actions taken may include renaming a file, deleting an

existing file, or physically moving a file.

DESCRIPTION

The generalsyntax of the MV command is:

MV,<source file spec> [,<target file spec>]

where <source file spec> is the name of the file to be moved,and
<target file spec> is the name to be associated with the file. The
default extension for the source file specification is ".TXT". The
default drive number for the source file specification. is the working
drive.

If the target file specification is incomplete, those items that are

missing will be supplied from the source file specification. In the

following example, the completed target file specification will be
"Q.DATAFILE.TXT":

+++MV ,0.DATAFILE.BAK,.TXT

In this example, the intention was to change the name of the file
“DATAFILE.BAK" on drive zero to "DATAFILE.TXT". Note that if a file
having the name "DATAFILE.TXT" does not already exist on drive zero, the
only action taken will be to rename the file "DATAFILE.BAK" to have the
name "DATAFILE.TXT". If instead a file named "“DATAFILE.TXT" already
exists, the action taken is to first delete the file “DATAFILE.TXT"
followed by renaming the file “DATAFILE.BAK". In either event, the end
result is that "DATAFILE.BAK" is moved to “DATAFILE.TXT".

It should be noted that all actions taken by the MV. program are_ taken
WITHOUT informing the operator of the details necessary to perform the
move function. This includes any required move operations or the

deletion of existing files.

Consider the case where the file "DATAFILE.BAK" is protected against
deletion (see the PROT command) in the following example. Since a file
that is protected cannot be renamed, in order to obtain a file with the
name "DATAFILE.TXT" it is necessary to physically copy the file
“DATAFILE.BAK" into a new file named "DATAFILE.TXT" on drive zero:

+++PROT,DATAFILE.BAK,+D
+++MV ,0.DATAFILE.BAK,. TXT
-- Source file not deleted.

Since the file "DATAFILE.BAK"is protected and hence cannot be deleted,
|

the message
"-- Source file not deleted." is displayed.

-M.2.1-

eee

FLEX User's Manual

In the next example, the intention is to move the file "DATAFILE.TXT"

from drive zero to drive one. This example illustrates another case

where it is necessary for the MV command to copy the data in a file:

++4+MV,0.DATAFILE,1

In this case, the completed source file specification is

"Q.DATAFILE.TXT" and the completed target file specification is

"1.DATAFILE.TXT". In order to accomplish the specified move, the MV

program must take the following actions:

1. If a file named "DATAFILE.TXT" already exists on drive one, it

is deleted.

2. The file "DATAFILE.TXT" on drive zero is copied in its

entirity to drive one. This process creates a duplicate of

the original file, retaining the data and attributes of the

original file.

3. Unless it is protected, the file "DATAFILE.TXT" on drive zero

is deleted.

The end result of these actions is to place a file named "DATAFILE.TXT"

on drive one which is identical to the file named "DATAFILE.TXT" which

had previously existed on drive zero. That is, the file has been moved

from drive zero to drive one.

In the final example, the working drive has been assigned to drive zero.

The file "“WORKFILE.TXT" exists on drive zero, but has been damaged due

to operator oversight. A backup of this file, "WORKFILE.BAK" exists on

drive one and will be used to replace the damaged file:

++4+MV 1.WORKFILE.BAK,O.. TXT

In this case, it is necessary to specify both the source file drive

(which otherwise would default to drive zero) and the target file drive

number. The completed target file specification will be

"Q.WORKFILE.TXT". The MV program will move the backup file by first

deleting "WORKFILE.TXT" on drive zero, then copying the file

"WORKFILE.BAK" from drive one to drive zero, and finally deleting the

file on drive one. Again, all these actions take place without the

intervention of the operator.

-M.2.2-

MIRROR

The MIRROR program is used to produce a mirror image copy of a disk. A
double sided, double density eight inch floppy disk may be copied in

approximately 90 seconds.

DESCRIPTION

_ The general syntax of the MIRROR command is:

MIRROR,<input drive>,<output drive> [,+V]

where <input drive> is the drive number of the disk to be duplicated,
and <output drive> is the drive number of the disk to be overwritten.
The +V. option may be used to supress verification of the written data.
All data and directory information (including free space, bootstrap
sectors, etc.) is copied from the input drive to the output drive. The
mirror program requests confirmation from the operator, since the entire
contents of the output disk will be overwritten. An example of the use
of mirror is as follows:

+++MIRROR0,1
Formatted scratch disk in drive 1? Y
Are you sure? Y
-- Mirror Complete.

Copying is performed on a sector by sector basis with no regard for the
contents of the disk. No reorginization is performed on files, free
Space, or on the directory. Unless supressed by the "+V" option, all
data written to the output disk is verified, regardless of the state of
the Flex VERIFY flag. After the entire contents of the disk has been
copied, the volume name and number of the output disk are restored to
their contents prior to the mirror operation.

If read or write errors are detected during the copy operation, they are

retried several times. If the retries fail, the error is considered
permanent and the mirror operation is aborted. Note that this implies
that the mirror program cannot be used to copy from or to disks that
have defective sectors.

Since no formatting operation is performed on the output disk, both
disks must have previously been formatted (via the NEWDISK program) and
both disks must have identical format (Single or Double Sided, Single or
Double Density, etc.) It is not necessary to reformat an already
formatted disk prior to running the mirror program as its entire
contents will be overwritten.

-M.3.1-

NEWDISK

Newdisk is used to format a new diskette. Diskettes as purchased wil]not work with FLEX until certain formatting information has been put onthem. The NEWDISK utility puts this information on the blank diskette,as well as checking for surface defects on the media.

DESCRIPTION

The general syntax of the NEWDISK command is:

NEWDISK,<drive>

where <drive> represents a Single digit drive number and specifies thedrive containing the diskette to be formatted. After entering thecommand, the system will ask if you are sure you want to format thediskette (Remember, the NEWDISK Process will remove any informationpreviously contained on the disk), and if diskette to be initialized isa scratch disk. Type 'Y' as the response to these questions if you aresure the NEWDISK command should continue.

Certain versions of NEWDISK will also ask you if you want to make doublesided, double density, or extra density diskettes, and about how «manytracks to format. These questions relate to the hardware configurationof the system in use and are Summarized below.

NEWDISK will then prompt for a volume name and number. This gives youthe ability to "name" the diskette for future reference. The volumename consists of eight characters, with an optional three characterextension. The volume number should be in the range of 1 to 32000.Note that it is exceedingly poor practice to generate diskettes withoutvolume identifiers.

The NEWDISK process takes several minutes to initialize a diskette,assuming there are no bad spots that must be accounted for. Defectivesectors will make NEWDISK run even slower, depending on the number ofbad sectors found. As bad sectors are detected, messages will be outputto the terminal such as:

BAD SECTOR AT xxyy

where 'xx' is the diskette track number (in hex) and 'yy' is the sectornumber, also in hex. NEWDISK automatically removes bad sectors from thelist of available sectors, so even if a diskette has several bad spotson it, it is still usable. When NEWDISK finishes, it will report thenumber of available sectors on the disk.

Sometimes during the NEWDISK process, a sector will be found defectivein an area on the diskette which is required by the operating system.In such a case, NEWDISK wil] report:
FATAL ERROR - FORMATTINGABORTED

NATL

a cccnnmmmmenn

FLEX User's Manual

You should not immediately assume that the diskette is unusable if this

occurs. You should remove the diskette from the drive and clean the

heads in that drive using one of the available head cleaning kits. Then @
you should re-insert the diskette that was flagged as faulty, and try to

format it again. If after several attempts the formatting process is

still aborted, you can assume the diskette is unusable and discard it.

Diskette Formats:

The NEWDISK program provides several optional diskette formats. Certain

formats may only be used with specific configurations of disk

controllers. This table summarizes available formats and hardware

constraints on their use:

1. Single Density -- supported by all controllers and drives.

Diskettes that are to be shipped to other systems should be

formatted in this manner if it is at all feasable.

2, Double Density -- supported by DC-4 and DMF-2 controllers with

Qume, Remex and Tandon disk drives. Other configurations should

use single density only.

3. Extra Density -- supported by DMF-2 controllers with Qume and

Remex drives only. Note that the MIRROR command runs considerably

slower with diskettes formatted extra dens ity.

4. Quad Density -- supported by DC-4 controllers using Tandon or Qume

quad density 5-inch drives. Note that diskettes should be

certified for use with Quad Density.

5. Double Sided -- supported by DC-3 and DMF-1 (and higher)

controllers using SOME Wangco and Calcomp drives, and ALL Qume,

Remex, and Tandon drives. Note that diskettes certified for

double sided operation must be used.

6. 40 Track - supported by DC-2 (and higher) controllers using

Wangco, Tandon, or Qume 5 inch drives. Note that diskettes

certified for 40 track operation must be used.

7. 77 Track - supported by DC-4 controllers using Tandon or Qume quad

density drives with Verbatim Datalife quad density 5 inch

diskettes.

8. 80 Track - supported by DC-4 controllers using Tandon or Qume quad

density drives and Dysan or IBM quad density 5 inch diskettes

certified for 80 track operation.

-N.1.2-

FLEX User's Manual

CREATING SYSTEM DISKETTES

A system diskette is one from which the operating system can be loaded.

Normally the system diskette will also contain the Utility Command Set
(UCS). The following procedure should be used when preparing system
disks.

1. Initialize the diskette using NEWDISK as described above.

2. COPY all .SYS files desired to the new disk.

3. COPY all .CMD files to the new disk. It should be noted that

steps 2 and 3. can be done with one command;
"COPY ,0,1,.SYS,.CM,.0V,.LOW", assuming that the new diskette in in
drive 1 and that the operating system and all commands and _ their

overlays are desired. (the .0V copies overlay files and .LOW

copies the utility 'SAVE.LOW').

4. Finally LINK the file FLEX.SYS to the system using the LINK

command.

It is not necessary to make every diskette a system diskette. It is

possible to create ‘working’ diskettes, which do not have the operating
system on them, for use with text files or BASIC files. Remember that a

diskette can not be used for booting the system unless the operating
system is contained on it and it has been linked.

-N.1.3-

The N command is used to automatically answer "N" to prompts produced by
various FLEX utilities. This facility is especially useful when writing
EXEC files.

DESCRIPTION

The general syntax of the N command is:

N,<command string>

where <command string> is a valid command line to be passed to FLEX. If

the N command is used with multiple commands per line using the end of

line character, it will only affect the command immediately following
it. The N command jis particularly useful when performing COPY

operations that you do not wish to overwrite any existing files:

++4+NCOPY ,0,1, TEXT

“FILE TEXT] =. TXT TO DRIVE #1 COPIED.

FILE TEXT2 «TXT TO DRIVE #1 FILE EXISTS
DELETE ORIGINAL? N

FILE TEXT3 ~~.TXT TO DRIVE #1 FILE EXISTS

DELETE ORIGINAL? N

FILE TEXT4 =. TXT TO DRIVE #1 COPIED.

-N.2.1-

NF

The NF command is used to filter an output stream to remove form feed

control characters. This is useful with certain printers that do not

support form feeds or vertical tabs.

DESCRIPTION

The general syntax of the NF command is:

<print command>,NF,<command string>

where <print command> is one of the printer support commands (such as P,
Q, etc.) and <command string> is a valid command line to be passed to

FLEX. If the command line contains multiple commands, the NF command

(and the print) will refer only to the first command. An example of the
use of the NF command will clarify its use:

+++P NF CAT

This example will produce a catalog listing of the working drive on the

printer selected by the P command. It is assumed that this printer does

not have form feed capability (like the Centronix 737 printer).

-N.3.1-

The 0 (not zero) command can be used to route all displayed output from
a utility to an output file instead of the terminal. The function of 0
is similar to P (the printer command) except that output is stored in a
file rather than being printed on the terminal or printer. Other TSC
software may support this utility. Check the supplied software
instructions for more details.

DESCRIPTION

The general syntax of the 0 command is:

0,<file spec>,<command>

where <command> can be any standard utility command line and <file spec>is the name of the desired output file. The default extension on <file
spec> is .OUT. If 0 is used with multiple commands per line (using the
‘end of line' character ':') it will only have affect on the command it
immediately precedes. Some examples will clarify its use.

+++0,CAT,CAT
writes a listing of the current disk directory into
a file called CAT.OUT

+++0,BAS,ASMB,BASIC. TXT
writes the assembled source listing of the text
source file 'BASIC.TXT' into a file called 'BAS.OUT'
when using the assembler

-0.1.1-

The P command jis used to direct the output of commands in the UtilityCommand Set to a parallel printer. It is normally used to produce hard
Copy output from text processors, assemblers, and other utilityprograms.

DESCRIPTION

The general syntax of the P command is:

PL#n],<command string>

where #n is optional and is the port numberof the parallel interfaceconnected to the printer and <command string> is a valid command line tobe passed to FLEX.

If the port number jis not specified, it will default to port seven,except on S/09 computers which will default to the MP-ID parallel port.If the P command is used with multiple commands per line using the endof line chracter, it will only affect the command immediately followingit~ in the command line. Some examples will clarify the use of the Pcommand:

+++P ,CAT
+4++P#3,LIST,TEXT
++4+P#5-BLIST, TXT

The first example wil] produce a printed listing of the catalog of the
working drive. The port number is omitted and defaults to port seven orthe MP-ID port, depending on the computer system.
The second example will produce a printed listing of the file TEXT.TXTon the printer connected to port number three. When using dual parallelports, the port side may be specified by using an A or B suffix to theport number. The suffix is separated from the port number by a hyphenor slash character. If the suffix is omitted, the A side of the port isselected. In the third example, the port specification of 5-B will usethe B side of port number five.

The P command initially loads into the utility command space, at $C100.If sufficient memory has been reserved for the printer driver (see theRM command documentation) it will be relocated there, otherwise it willbe relocated into the highest available locations in user memory and theend of user memory pointer will be updated. When the command to beprinted has completed any user memory allocated to the printer driverwill be released.

The parallel data and handshake conforms to the CENTRONIX® interfaceStandard. This standard has been widely adopted for use with 8-bitASCII printers and is available on nearly all parallel printers.

-P.1.1-

P.COR

The P.COR file is a command file that can be used to construct
- customized printer driver commands. It contains the relocation and

memory management routines required to use position independant printer
drivers.

DESCRIPTION

P.COR is never used as a command by itself. Special internal checks are

made to insure that a printer driver has been properly appended to the

P.COR file. In order to use P.COR, you must write a position

independant printer driver that begins at memory address $C300 and may

extend up to location $C6FF, thus allowing the driver to be up to 1K in

length. This is normally sufficient space for any reasonable printer
driver. For more information on writing a position independant driver,
see section X in chapter 3.

Once the printer driver has been written and assembled, you must use the

append command to combine the P.COR file with the printer driver. To

clarify this procedure, consider the following example. A serial

printer driver (A listing of this driver can be found in Chapter 3

section XI) named SERIAL has been assembled. In order to make a print
command out of this driver, the following command line must be entered:

APPEND,P.COR,SERIAL.BIN,SERIAL.CMD

The result is a print command that functions like the P command. To use

the new SERIAL command, enter

SERIAL[#nJ,<command str ing>

where #n is the port number (you have set the default) and <command

$tring> is any command string to be passed to Flex.

-P.2.1-

PO

The PO command is the older version of the P command and has been
included for compatability purposes.

DESCRIPTION

The general syntax of the PO command js:

PO,<command str ing>
where <command string> can be any standard utility command line. If PO
is used with multiple commands per line (using the ‘end of line'
Character), it will only have affect on the command it immediately
preceeds. Some examples will clarify its use:

+++P0 CAT
+++P0,LIST MONDAY:CAT,1

The first example would print a CATalog of the directory of the working
drive on the printer. The second example will print a LISTing of the
text file MONDAY.TXT and then display on the terminal a CATalog of drive
1 (this assumes the ‘end of line’ character is a ‘:'). Note how the PO
did not cause the 'CAT,1° to go to the printer.

The PO command tries to load a file named PRINT.SYS from the same disk
Which PO itself was retrieved. The PRINT.SYS file which is supplied
with the system diskette contains the necessary routines to operate a
parallel printer connected to port seven of a /09 computer system. For
complete details on these routines, refer to section XI of this
publ ication.

-P.3.1-

PSP

The Print Spool Program provides FLEX with the ability to output stored

data to a printer at the same time that it is performing other tasks.

This method of printing is called Printer Spooling. This feature is

especially useful when it is necessary to print a long listing without

tying up the computer.

DESCRIPTION

The general syntax of the Print Spool Program is as follows:

PSP,[<spool file>] L,<print command>] L,+<repeat count>]

where <spool file> is the name of the file to be printed (normally

produced by the "0" command), <print command> is the name of the print
command that will be used to drive the printer, and <repeat count> is

the number of additional copies of print you require. The default

extension of the spool file is .OUT and the default extension for the

print command is .CMD.

For example, say that your disk had a very large number of files on it

and a printer catalog listing was desired. A file containing the output

information should first be created by using the 0 command such as:

+++0,CAT.OUT ,CAT.CMD or +++0,CAT,CAT
(see the description of the 0 command)

when printer output is desired the command

+++PSP,CAT.OUT,P.CMDor +++PSP,CAT,P

should be entered.

At this time the location of the file CAT.OUT is stored in a buffer

called a print queue (waiting list). If another PSP command is issued

before the first is finished, the second file will be in the next

available location in the print queue.

After the file name to be printed has been stored in the print queue,

the PSP program will load the specified printer driver command into the

printer reserved area (See the RM command). If the reserved area is not

big enough, a message is issued and the program terminates. Otherwise,

the spooling process is started and control returns to the FLEX command

interpreter. Note that any of the relocatable printer commands may be

used, including the Q and SP commands.

Once printing is in progress, it is not possible to change printer
drivers until the spooling process has completed. For example, if you

have three files that you wish to print on a Qume printer, and two on a

serial printer, you must first spool the three Qume files and allow them

to complete printing. You can then spool the two files destined for the

serial printer.

-P.4.1-

FLEX User's Manual

During printing, you can perform flex commands from the terminal, such
as deleting files, copying disks, etc. While you are using FLEX, thePrint Spool Program will be printing the desired file. PSP will
automatically wait for the printerto become ready (power up) even after
the file has been entered into the print queue. After printing thefirst file, the second file in the queue will be printed (if there jis
one), etc. The print queue may be examined or modified at any time byusing the QCHECKutilty.

NOTE: There are several things that the user should be aware of when
using the printer Spool ing:

1) Any file that is in the print queue may not be deleted,
renamed, or changed in any way until it has been printedor removed by the QCHECKprint queue manager utility.

2) Disks which contain the files in the print queue should
not be removed while the files are still in the queue.

3) Non-Spoo]ing print commands (like P) cannot be used while
files are waiting in the print queue.

4). Anypaper or cassette tape load or any other operation
~ which requires that the computer accept data at precise

time intervals should not be executed during a printer
spooling operation.

5) In order for printer spooling to work in a non-S/09 computer
System, an MP-T or MP-T2 interface must be installed in 1/0port five and be strapped to provide IRQ interrupts.

6) The PSP command is not supported by FLEX9S.

7) The PSP command will function only with FLEX 9.0 Version
2.6 or above. If in doubt, check with "VER FLEX.SYS".

-P.4.2-

PROT

The PROT command is used to change a protection code associated with

each file. When a file is first saved, it has no protection associated
with it thereby allowing the user to write to, rename, or delete the

file. Delete or write protection can be added to a file by using the

PROT command.

DESCRIPTION

The general syntax of the PROT command is:

PROT,<file spec>[,(option list)]

where the <file spec> designates the file to be protected and (option

list) is any combination of the following options.

D A ‘'D' will delete protect a file. A delete protected file cannot be

affected by using the DELETE or RENAME Commands, or by the delete
functions of SAVE, APPEND, etc.

WA ‘'W' will write protect a file. A write protected file cannot be

deleted, renamed or have any additional information written to it.

Therefore a write protected file is automatically delete protected
-as well.

C A 'C' will Catalog protect a file. Any files with a C protection
code will function as before but will not be displayed when a

CAT command is issued.

X An 'X' will remove all protection options on a specific file.

Examples:

+++PROT CAT.CMD,XW Remove any previous protection on the CAT.CMD

Utility and write protect it.

+++PROT CAT.CMD,X Remove all protection from the CAT.CMD utility.
++4+PROT INFO.SYS,C Prohibit INFO.SYS from being displayed in a

catalog listing.

-P, 5. 1-

PUTBOOT

The PUTBOOT command jis used to write the FLEX bootstrap loader onto a
disk in FLEX format.

DESCRIPTION

The general syntax of the PUTBOOT command is:

PUTBOOT,<drive spec> or

PUTBOOT,<file spec>

where <drive spec> is the drive number containing the disk to be
written. If a file specification is provided, PUTBOOT will also performthe LINK function to the specified file. In either case, an explicitdrive number MUST be specified. PUTBOOT will not default to the workingdrive. For example, in order to write a new bootstrap onto the disk in
drive one, type:

+++PUTBOOT,1

This will cause a new bootstrap to be written to the disk. Note that
this does not format the disk, nor does it change any files on the
specified disk.

The bootstrap loader is normally written onto the FLEX disk when it is
initially formatted with the NEWDISK program. The PUTBOOT program maybe used to re-write the bootstrap in the event that it is damaged, or to
update to a newer version of FLEX without having to copy the entire disk
to a newly-formatted disk.

IMPORTANT NOTE

FLEX versions 2.6:8 or higher have a revised bootstrap. loader. The new

bootstrap must be present in order to be able to successfully boot the
new versions of Flex. In order to upgrade a disk to these new versions,the following procedure should be followed:

1. The new release FLEX disk should be booted and the disk to be
upgraded placed in drive one with write enabled.

2. The PUTBOOT program should be used to write a new bootstrap onto
the old disk. This will not affect any data currently on the
disk except the bootstrap itself.

3. The AR program should be used to replace any older programs that
have been re-released. Consult the AR documentation for
details.

4. Copy any new programs you wish to the upgraded disk. This
completes the upgrade procedure.

-P.6.1-

The Q command is used to direct the output of commands in the Utility
Command Set to a Qume Sprint-3" printer attached to an MP-QP 1/0
interface. It is normally used to produce hard copy output from text
processors, assemblers, and other utility programs.

DESCRIPTION

The general syntax of the Q command is:

QL#<n>J[/<format>],<command string>

where #<n> is optional and is the port number of the MP-QP interface
connected to the printer, <format> is optional and is is one of the
letters A, B, C, D, E, or F, and <command string> is a valid command
line to be passed to FLEX. If the port number is not specified, it will
default to port seven. If the Q command is used with multiple commands
per line using the end of line chracter, it will only affect the command
immediately following it in the commandline.

The format letter is separated from the port number or Q command by a
Slash character, and specifies the printwheel pitch and print spacing to
be used. If the format character is omitted, it will default to format
"B". This format represents standard elite spacing and is used with the
WP LETTER GOTHIC 12 printwheel (number 80956) supplied with the
printers. The following formats are available:

10 Characters/Inch Horizontal, 6 Lines/Inch Vertical
12 Characters/Inch Horizontal, 6 Lines/Inch Vertical
15 Characters/Inch Horizontal, 6 Lines/Inch Vertical
10 Characters/Inch Horizontal, 8 Lines/Inch Vertical
12 Characters/Inch Horizontal, 8 Lines/Inch Vertical
15 Characters/Inch Horizontal, 8 Lines/Inch VerticalAMOOG

>

t

Some examples will clarify the use of the Q command:

++4+Q,CAT

This example will produce a printed listing of the catalog of the
working drive. The port number is omitted and defaults to port seven.
The format is also omitted, and defaults to "B", 12 characters per inch
horizontal, and 6 lines per inch vertical.

+4++0#3LIST, TEXT
l

This example will produce a printed listing of the file TEXT.TXT. The
port has been specified as port number three. No format is specified
and the default "B" will be assumed.

-Q.1.1-

FLEX User's Manual

+++Q/F ,ROFF LETTER

In this example, no port number is given so the default of seven will be

selected. Format "F" has been selected so the printed output will be

spaced 15 characters per inch horizontal, and 8 lines per inch vertical.

This format provides 88 lines per 11 inch page, and matches the Qume
GOTHIC 15 printwheel (number 82090).

The Q command initially loads into the utility command space at $C100.
If sufficient memory has been reserved for the printer driver (see the

RM command documentation) it will be relocated there, otherwise it will

be relocated into the highest available locations in user memory and the

end of user memory pointer will be updated. When the command to be

printed has completed any user memory allocated to the printer driver

will be released.

~Q.1.2-

QCHECK

The QCHECK utility can be used to examine the contents of the printqueue and to modify it contents. QCHECK has no additional argumentswith it. Simply type QCHECK. QCHECKwill stop any printing that is

fon place and then display the current contents of the print queue asOllows:

+++QCHECK

POS NAME TYPE RPT
1 TEST. - OUT 2
2 CHPTR. - OUT 0
3 CHPTR2. «TXT 0

COMMAND?

This output says that TEST.OUT is the next file to be printed (or thatit is in the process of being printed) and that 3 copies (1 plus a
repeat of 2) of this file will be printed. After these three copieshave been printed, CHPTR.OUT will be printed and then CHPTR2.TXT. TheCOMMAND?prompt means QCHECK is waiting for one of the followingcommands :

COMMAND FUNCTION

(carriage return) Re-start printing, return to the FLEX command mode.

Q A Q command will print the queue contents again.

R,#N,X An R command repeats the file at position #N X times.
If X is omitted the repeat count will be cleared.Example: R,#3,5

D,#N A D command removes the file at queue position #N.
If N=1, the current print job will be terminated.
Example: D,#3

T A T command will terminate the current print job.
This will cause the job currently printing to quit
and printing of the next job to start. If the
Current files RPT count was not zero, it will
print again until the repeat count is 0. To
Completely terminate the current job use use the
D,#1 command. a

Ny #N A N command will make the file at position #N the
next one to be printed after the current print job
is finished. Typing Q after this operation will
show the new queue order.
Example: N,#3

S An S command will cause printing to stop. After
the current job is Finished, printing will halt
until a G command is issued.

—=Q.2.1-

FLEX User's Manual

G A G command will re-start printing after an S

command has been used to stop it.

K A K command will kill the current print process.

All printing and queued jobs will be removed from

the queue. The files are not deleted from disk.

The QCHECKcommand is not supported under FLEX9S and Multi-User Basic.

-Q.2.2-

RENAME

The RENAME command jis used to give an existing file a new name in thedirectory. It is useful for changing the actual name as well as changingthe extension type.

DESCRIPTION

The general syntax of the RENAME command is:

RENAME,<file spec 1>,<file spec 2>

Where <file spec 1> is the name of the file you wish to RENAME and <file
spec 2> is the new name you are assigning to it. The default extensionfor file spec 1 is TXT and the default drive is the working drive. If
no extension is given on <file spec 2>, it defaults to that of <file
spec 1>. No drive is requird on the second file name, and if one isgiven it is ignored. Some examples follow:

+++RENAME, TEST1.BIN,TEST2
++4+RENAME,1.LETTER,REPLY
+++RENAME,O.FIND.BIN,FIND.CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next exampleRENAMEs the file LETTER.TXT on drive 1 to REPLY.TXT. The last linewould cause the file FIND.BIN on drive 0 to be renamed FIND.CMD. Thisis useful for making binary files created by an assembler into commandfiles (changing the extension from BIN to CMD). If you try. to give afile a name which already exists in the directory, the message:

FILE EXISTS

will be displayed on the terminal. Keep. in mind that RENAME onlyChanges the file's name and in no way changes the actual file'scontents.

One last note of interest. Since utility commands are just like anyOther file, it is possible to rename them also. If you would prefersome of the command names to be shorter, or different all together,simply use RENAMEand assign them the names you desire.

-R.1.1-

RM

The RM command is used to Reserve Memory in which to load printer
drivers that are too large to fit in the actual printer driver area.

This command is primarily intended to permit the use of large printer
drivers (such as the QUME™driver) with programs like BASIC that use all

available memory.

DESCRIPTION

The general syntax of the RM command is:

RM[,<size>] or RM?

where <size> is a decimal number indicating the amount of memory to be

reserved for the printer drivers. If not specified, the size parameter
defaults to 512 bytes. If memory has previously been reserved for

printer drivers, the RM command will adjust the amount of memory

available as necessary. In order to get rid of the reserved memory, it

is only necessary to run the RM command with a size value of zero. If

the second form of the RM command is used, the amount of reserved memory

will be reported.

Flex™ itself reserves approximately 56 bytes of memory for printer
driver code and defines the printer vector locations. While this is

sufficient to run simple parallel or serial printers, it is not enough

memory to hold drivers for more comp]icated devices, for example, serial

printers requiring buffers and line protocol. The RM command allows the

user to reserve a memory area for the printer drivers that will be off

limits to programs like BASIC that use all available memory. Note that

it is NOT necessary to use the RM command to use the printer commands

like P and Q.

Some examples of using the RM command follow:

RM,700

RM?

RM,O

The first example will reserve 700 bytes of memory for use as a_ printer
area. The second example will display that 700 bytes are reserved, and

the third example will free the memory reserved for the printer.

-R.2.1-

READPROM

The READPROM command is used to read the data from a 2716

compatible EPROM in a SWTPCMP-R EPROM programmer to a binary disk file.
Its primary use is for copying and modifying the contents of EPROMs.

DESCRIPTION

The general syntax of the READPROM command is:

READPROML#n],<file spec>

Where #n is optional and is the port number in which the PROM programmer
is installed and <file spec> is the name to be assigned to the output
file. The default extension on the file is «BIN and the default drive is
the working drive. The default port for READPROM is #4. Some examples.
will clarify the use of READPROM.

+++READPROM,JUNK
+++READPROM#7 ,JUNK.1

The first example will store the contents of the EPROM on the

programmer in port #4 to the file JUNK.BIN on the working drive. The
second example will read the EPROM on the programmer in port 7 and store
its contents in the file JUNK.BIN on drive 1. If an attempt is made to
save a program under a file name that already exists, the prompt "MAY
THE EXISTING FILE BE DELETED?" will be displayed. A Y response will

replace the file with the new data to be saved while a N response will
terminate the save operation.

The output file generated by READPROM will be 2048 (2K) bytes. in

length with a load address of 0000. No. transfer address will be

assigned to the file.

The EPROM should not be installed in the programmer until the
READPROM command tells you to.

Default Port Addresses

If desired, the default port address can be changed by using the
FIX utility on READPROM.CMD.

READPROM Address Contents

C100 S/09, 69A, 69K Default Port Address
C102 /09 Default Port Address

R.3.1

The S command is used to direct the output of commands in the Utility
Command Set to a serial printer. It is normally used to produce hard
copy output from text processors, assemblers, and other utility
programs.

DESCRIPTION

The general syntax of the S command is:

SL#n],<command str ing>
where #n is optional and is the port number of the serial interface
connected to the printer and <command string> is a valid command line to
be passed to FLEX. If the port number is not specified, it will default
to port seven. If the S command is used with multiple commands per line
using the end of line chracter, it will only affect the command
immediately following it in the command line. Some examples will
clarify the use of the S command:

S,CAT

This example will produce a_ printed listing of the catalog of the
working drive. The port number is omitted and defaults to port seven.

S#3,LIST,TEXT

This example will produce a printed listing of the file TEXT.TXT. The
port has been specified as port number three.

When using dual serial ports, the port side may be specified by using an
A or B suffix to the port number. If the suffix is omitted, the A side
of the port is used. For example, a port specification of 5B will use

_the B side of port number five.

The S command initially loads into the utility command space at $C100.
If sufficient memory has been reserved for the printer driver (see the
RM command documentation) it will be relocated there, otherwise it will
be relocated into the highest available locations in user memory and the
end of user memory pointer will be updated. When the command to be
printed has completed any user memory allocated to the printer driver
will be released.

,

The serial data output to the printer is 8-bit ASCII with no parity.
The S command does not use an ACK protocol, however it will honor the
data terminal ready line if it is connected to the interface.

-S.1.1-

SAVE

The SAVE command is used for saving a section of memory on the disk.

Its primary use is for saving programs which have been loaded into

memory from tape or by hand.

DESCRIPTION

The general syntax of the SAVE command is:

SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]

where <file spec> is the name to be assigned to the file. The default

extension is BIN and the default drive is the working drive. The

address fields define the beginning and ending addresses of the section

of memory to be written on the disk. The addresses should be expressed
as hex numbers. The optional <transfer address> would be included if

the program is to be loaded and executed by FLEX. This address tells

FLEX where execution should begin. Some examples will clarify the use

of SAVE:

+++SAVE,DATA,100,IFF
+++SAVE,1.GAME,0,1680,100

The first line would SAVE the memory locations 100 to 1FF hex on _ the

disk in a file called DATA.BIN. The file would be put on the working
drive and no transfer address would be assigned. The second example
would cause the contents of memory locations 0 through 1680 to be SAVEd

on the disk in file GAME.BIN on drive 1. Since a transfer address of

100 was specified as a parameter, typing 'GAME.BIN' in response to the

FLEX prompt after saving would cause the file to be loaded back into

memory and execution started at location 100.

If an attempt is made to save a program under a file name that already

exists, the prompt "MAY THE EXISTING FILE BE DELETED?" will be

displayed. A Y response will replace the file with the new data to be

saved while a N response will terminate the save operation.

Sometimes it is desirable to save noncontiguous segments of memory. To

do this it would be necessary to.first SAVE each segment as a separate
file and then use the APPEND command to combine them into one file. If

the final. file is to have a transfer address, you should assign it to

one of the segments as it is being saved. After the APPEND operation,
the final file will retain that transfer address.

-S.2.l1-

FLEX User's Manual

SAVE. LOW

There is another form of the SAVE command resident in the UCS. It is
called SAVE.LOW and loads in a lower section of memory than the standard
SAVE command. Its use is for saving programs in the Utility Command

Space where SAVE.CMD is loa Those interested in creating their own

utility commands should consult the ‘Advanced Programmer's Guide' for
further details.

-$.2.2-

SBOX

The SBOX command is used to configure Flex™ to run with various

configurations of memory and I/0. The selected configuration is then

reported to the programmer.

DESCRIPTION

The general syntax of the SBOX command jis:

SBOX [,<parameter>=<value>]

where <parameter> is one of the keywords described below, and <value> is
a string appropriate to the keyword. Values are either a decimal number
or one of the words "YES" or "NO". If a yes or no response is

appropriate, you can specify the single letters "Y" or "N". If no equal
sign follows the parameter, an implicit "=Y" is assumed.

The following paragraphs describe each of the keyword parameters and

what values they may assume. However, these values are normally set via
the Flex™ bootstrap configurator. Using the SBOX command to arbitrarily
change these parameters may result in unpredictable results. For

example, you can use the SBOX "CPU" parameter to set the "2MHz" bit in
the CPU type flag. This does NOT mean that the computer will then be

running at 2 MHz. Programs that contain internal timing loops may make
use of this flag byte and will then function improperly.

CPU=1 or CPU=2

This parameter is used to set the CPU speed in MHz in the CPU type flag.
It is normally used on non-S/09 systems that have been modified to run

at 2 Mhz. The flag is set by the bootstrap configurator in S$/09
systems.

PORT=4 or PORT=16

This parameter is used to set the number of addresses per I/0 port. The

default value is set by the configurator and is four for /09 systems
only. For S/09, 69/A and 69/K systems, the proper value is sixteen. For

compatability purposes, the keyword "I0="_ is also accepted for this

parameter.

PLF=50 = or PLF=60

This parameter is the Power Line Frequency. It is set by the

configurator on S/09 systems only and defaults to 60 Hz. for other

computer systems.

-S.3.1-

FLEX User's Manual

EXT=YES or EXT=NO

This value determines whether the system is using extended 20-bit
addresses.. It is set by the bootstrap if an extended memoryunit (such
as the Motorola SMS3509) is installed in the computer.

TIMER=YESor TIMER=NO

This parameter is set by the configurator on S/09 systems to reflect the

presence of the 68B40 programmable Timer Module on the MP-ID interface.
For convenience, the keyword "“INT=" (For INTerval timer) is also

accepted.

UC=YES or UC=NO

This.parameteris defaulted to YES by the bootstrap, and causes Flex™ to

internally map all file names into upper case. If both upper and lower

case file names are desired, the parameter may be set to "NO".

NOMSG

‘The final parameter is not a keyword, and may be specified to supress
printing of the option flag settings. This parameter is useful when the
SBOX command is included in STARTUP files. When this parameter is not

specified, the format of the SBOX report is as follows:

SWTPC Configurator -- Version 2

Memory Size = 128K

1/0 Port Size = 16
CPU Clock Rate = 2 MHz

Power Line Frequency = 60 Hz

Extended Addressing = Yes
Interval .Timer = Yes

Real Time Clock = Yes

Upper Case Only = Yes

-S.3.2-

SP

The SP command is used to direct the output of commands in the Utility
Command set to an IBM Electronic Typewriter Model 50 connected to an
MP-WP interface. It is normally used to produce hard copy output from
text processors, formatters, and other utility programs.

DESCRIPTION

The general syntax of the SP command is:

SP{#n],<command string>

where #n is optional and is the port number of the MP-WP interface
connected to the typewriter and <command string> is a valid command line
to be passed to FLEX. If the port number jis not specified, it will
default to port seven. If the SP command is used with multiple commands
per line using the end of line character, it will only affect the
command immediately following it in the command line. Some examples
will clarify the use of the SP command:

SP,CAT

This example will produce a printed listing of the catalog of the

working drive. The port numberis omitted and defaults to port seven.

SP#3,LIST,TEXT
This example will produce a printed listing of the file TEXT.TXT. The
port has been specified as port number three.

,

:

The SP command initially loads into the utility command space at $C100.
If sufficient memory has been reserved for the printer driver (see the
RM command documentation) it will be relocated there, otherwise it will]
be relocated into the highest available locations in user memory and the
end of user memory pointer will be updated. When the command to be
printed has completed any user memory allocated to the printer driver
will be released.

~S.4.1-

STARTUP

STARTUP is not a utility command but is a feature of FLEX. It is often
desirable to have the operating system do some special action or actions
upon initialization of the system (during the bootstrap loading
process). As an example, the user may always want to use BASIC

immediately following the boot process. STARTUP will allow for this
without the necessity of calling the BASIC interpreter each time.

DESCRIPTION

FLEX always checks the disk's directory immediately following the system
initialization for a file called STARTUP.TXT. If none is found, the
three plus sign prompt is output and the system is ready to accept
user's commands. If a STARTUP file is present, it is read and

interpreted as a single command line and the appropriate actions are

performed. As an example, suppose we wanted FLEX to execute BASIC each
time the system was booted. First it is necessary to create the STARTUP

file:

+++BUILD, STARTUP

=BASIC
=H

+++

The above procedure using the BUILD command will create the desired
file. Note that the file consisted of one line (which is all FLEX reads
from the STARTUP file anyway). This line will tell FLEX to load and
execute BASIC. Now each time this disk is used to boot the operating
system, BASIC will also be loaded and run. Note that this example
assumes two things. First, the disk must contain FLEX.SYS and must have

been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASIC.CMD actually exists on the disk.

Another example of the use of STARTUP is to set system environment
paramters such as TTYSET parameters or the assigning of a system and

working drive. If the STARTUPcommand. consisted of the following line:

TTYSET,DP=16 ,WD=60:ASN,W=1:ASN:CAT,O

each time the system was booted the following actions would occur.

First, TTYSET would set the ‘depth’ to 16 and the ‘width’ to 60. Next,
assuming the ‘end of line' character is the ':', the ASN command would

assign the working drive to drive 1. Next ASN would display the

assigned system and working drives on the terminal. Finally, a CATalog
of the files on drive 0 would be displayed. For details of the actions
of the individual commands, refer to their descriptions elsewhere in
this manual.

As it stands, it looks as if the STARTUP feature is limited to the
execution of a single command line. This is true but there is a way
around the restriction, the EXEC command. If a longer list of
operations is desired than will fit on one line, simply create a command

-S.5.1-

FLEX User's Manual

file containing all of the commands desired. Then create the STARTUP

file placing the single line:

EXEC,<file name>

where <file name> would be replaced by the name assigned to the command

file crea A little imagination and experience will show many uses for

the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS

command it is possible to lockout access to DOS. You can correct the

problem by hitting the RESET button and beginning execution at address

$CD03. The STARTUP file may then be deleted and if desired, modified.

Directing execution to CD03, the DOS warm start address, bypasses the

DOS STARTUP function.

-S.5.2-

SUM

The SUM command is used to calculate a 32-bit checksum over a file.

This checksum can be used to verify the integrity of various files
without the requirement of a sector by sector comparison.

DESCRIPTION

The general syntax of the SUM command is:

SUM,<file spec>

where <file spec> is the name of the file you wish to check. Note that
both a file name and extension are required. The SUM program will read
the file in its entirity and calculate a 32-bit checksum. This sum is
then reported to the user in decimal format. Certain heuristics are
invoked if the file is a text file, in order to prevent extraneous null
characters from altering the resultant checksum.

The checksum produced consists of an eight bit longitudinal parity, an

eight bit skewed parity, and a sixteen bit polynomial Cyclic Redundancy
Code (CRC). This combination was chosen through statistical sampling of
several algorithms and is highly reliable in detecting files that have
been corrupted. Since the program can produce a maximum of 2 ** 32 - 1
different checksums, it is obviously possible to generate two distinct
files that will produce identical checksums. The probability of this
occurance is extremely low if the files being checked bear considerable
similarity. This would be the case if the files were a binary file, and'

a patched version of the same binary file. Similarly, two text files
that differ by only a few percent of their lines will produce distinct
checksums in nearly all circumstances.

The use of the SUM program to compare files that are unrelated (like
comparing a binary file to a text file) is somewhat more suspect. The

probability of generating an identical checksum given two long arbitrary
random data files is approximately equal to one in 800 million. This
probability decreases as the length of the input files is reduced.

-S.6.1-

TTYSET

The TTYSET utility command is provided so the user may control the
characteristics of the terminal. With this command, the action of the
terminal on input and the display format on output may be controlled.

DESCRIPTION

The general syntax of the TTYSET command is:

TTYSETL,<parameter list>]

where <parameter list> is a list of 2 letter parameter names, each
followed by an equals sign (‘='), and then by the value being assigned.
Each parameter should be separated by a comma ora space. If no

parameters are given, the values of all of the TTYSET parameters will be

displayed on the terminal.

The default number base for numerical values is the base most

appropriate to the parameter. In the descriptions that follow, ‘hh' is
used for parameters whose default base is hex; ‘dd' is used for those
whose default base is decimal. Values which should be expressed in hex
are displayed in the TTYSET parameter listing preceded by a ‘$'. Some

examples follow:

+4+4+TTYSET
+++TTYSET, DP=16,WD=63
+4++TTYSET,BS=8,ES=3

The first examplesimply lists the current values of all TTYSET
parameters on the terminal. The next line sets the depth ‘DP' to 16
lines and the terminal width, 'WD' to 63 columns. The last example sets
the backspace character to the value of hex 8, and the escape character
to hex 3.

The followingfully describes all of the TTYSET parameters availableto
the user. Their initial values are defined, as well as any special
characteristics they may possess.

BS=hh BackSpace character

This sets the ‘backspace’ charcter to the character having the ASCII hex
value of hh. This character is initially a ‘control H' (hex 08), but

may be defined to any ASCII character. The action of the. backspace
character is to delete the last character typed from the terminal. If
two backspace characters are typed, the last. two characters will be

deleted, etc. Setting BS=0 will disable the backspace feature.

-T.l. 1-

FLEX User's Manual

BE=hh Backspace Echo character

This defines the character to be sent to the terminal after a

‘backspace’ character is received. The character printed will have the
ASCIT hex value of hh. This character is initially set to a null but
can be set to any ASCII character.

The BE command also has a very special use that will be of interest to
some terminal owners, such as SWTPC CT-64.

If a hex 08 is specified as the echo character, FLEX will output a space
(20) then another 08. This feature is very uesful for terminals which
decode a hex 08 as a cursor left but which do not erase characters as

the cursor is moved.

Example: Say that you mis-typed the word cat as shown below:
+++CAY

typing in one CTRL-H (hex 08) would position the cursor on top of the Y
and delete the Y from the DOS input buffer. FLEX would then send out a

space ($20) to erase the Y and another 08 (cursor left) to re-position
the cursor.

DL=hh DeLete character

This sets the ‘delete current line’ character to the hex value hh. This
character is initially a ‘control X‘ (hex 18). The action of the delete
character is to ‘erase' the current input line before it is accepted
into the computer for execution. Setting DL=0 will disable the line
delete feature.

EL=hh End of Line character

This character is the one used by FLEX to separate multiple commands on

one input line. It is initially set to a colon (':'), a hex value of
3A. Setting this character to 0 will disable the multiple command per
line capability of FLEX. The parameter 'EL=hh' will set the end of line
character to the character having the ASCII hex value of hh. This
character must be set to a printable character (control characters not
allowed).

DP=dd DePth count

This parameter specifies that a page consists of dd (decimal) physical
lines of output. A page may be considered to be the. numberof lines
between the fold if using fan folded paper on a hard copy terminal, or a

page may be defined to be the number of lines which can be displayed at

any one time on a CRT type terminal. Setting DP=0 will disable the
paging (this is the initial value). See EJ and PS below for more

details of depth.

-T.1.2-

FLEX User's Manual

WD=dd WiDth

The WD parameter specifies the (decimal) number of characters to be

displayed on a _ physical line at the terminal (the number of columns).
Lines of text longer than the value of width will be ‘folded’ at every
multiple of WD characters. For example, if WD is 50 and a line of 125
characters is to be displayed, the first 50 characters are displayed on

a physical line at the terminal, the next 50 characters are displayed on

the next physical line, and the last 25 characters are displayed on the
third physical line. If WD is set to 0, the width feature will be

disabled, and any number of characters will be permitted on a physical
line.

NL=dd NuL1T count

This parameter sets the (decimal) number of non-printing (Null) ‘pad’
characters to be sent to the terminal at the end of each line. These

pad characters are used so the terminal carriage has enough time to
return to the left margin before the next printable characters are sent.
The initial value is 4. Users using CRT type terminals may want to set
NL=0 since no pad characters are usually required on this type of
terminal.

TB=hh TaB character

The tab character is not used by FLEX but some of the utilities may

require one (such as the Text Editing System). This parameter will set
the tab character to the character having the ASCII hex value hh. This
character should be a printable character.

EJ=dd EJect count

This parameter is used to specify the (decimal) number of ‘eject lines’
to be sent to the terminal at the bottom of each page. If Pause is

‘on', the ‘eject sequence’ is sent to the terminal after the pause is
terminated. If the value dd is zero (which it is by default), no ‘eject
lines' are issued. An eject line is simply a blank line (line feed)
sent to the terminal. This feature is especially useful for terminals
with fan fold paper to skip over the fold (see Depth). It may also be

useful for certain CRT terminals to be able to erase the previous screen

contents at the end of each page.

PS=Y or PS=N PauSe control

This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause
feature. If Pause is on and depth is set to some nonzero value, the

output display is automatically suspended at the end of each page. The

Output may be restarted by typing the ‘escape’ character (see ES

description). If pause is disabled, there will be no end-of-page
pausing. This feature is useful for those using high-speed CRT terminals

-T.1.3-

FLEX User's Manual

to suspend output long enough to read the page of text.

ES=hh EScape character

The character whose ASCII hex value is hh is defined to be the ‘escape
character’. Its initial value is $1B, the ASCII ESC character. The

escape character is used to stop output from being displayed, and once

it is stopped, restart it again. It is also used to restart output
after Pause has stopped it. As an example, suppose you are LISTing a

long text file on the terminal and you wish to temporarily halt the

output. Typing the ‘escape character’ will do this (this feature is not

supported on computers using a Control Port for terminal

communications). At this time (output halted), typing another ‘escape
Character' will resume output, while typing a RETURN key will cause

control to return to FLEX and the three plus sign prompt will be output
to the terminal. It should be noted that line output stopping always
happens at the end of a line.

-T.1.4-

TOUCH

The touch command jis used to change the last-altered date in a file

directory entry to reflect the current date.

DESCRIPTION

The general syntax of the TOUCH command is:

TOUCH,<file spec>

where<file spec> is the name of the file to be touched. If no

extension is specified, a default of .TXT is assumed. The directory
entry of the file is updated so that the last altered date is set to the
current date. The contents of the file itself are not altered.

-T.2.1-

TIME -

The TIME command is used to determine the amount of real timerequired
by other Flex programs. It requires that the computer system have the
MP-1D interval timer installed and functional.

DESCRIPTION

The general syntax of the TIMEcommand is:

TIME ,<command1ine>

where <command line> is a valid Flex command string. The TIME command
will set up the interval timer, invoke FLEX to process the command

string, and report the amount of time required to process the command.
Time is reported in hours, minutes, seconds, and tenths of seconds, with

leading zero values supressed. An example will clarify the use of the
TIME command:

+++TIMECOPY,FILE1,FILE2
-- Elapsed Time was 1:23.4

In this example, 1 minute and 23.4 seconds were required to copy FILE1

into FILE2. The time command will generate valid time values for

programs running up to 38 hours. After this period, the reported time
will wrap back around to zero. Time values are generated using the

power line frequency as a reference. You should note that if the

50Hz/60Hz flag set by the configurator is incorrect, all of the values
returned by the time command will be incorrect. For more information on

the configurator, see the documentation of the SBOX command.

The TIME command initially loads into the utility command space at

-$C100. It initializes the timer and preserves certain Flex parameters.
It then gets approximately 400 bytes from user memory and relocates
itself into the reserved memory. If insufficient memory is available

for the relocation, a message is generated and the TIME command aborts.
Once relocated, the TIME command invokes Flex to process the command
line. When the command processing is finished, the interval timer is
used to determine the elapsed time required by the command which is then

reported. The preserved Flex parameters are restored and the user

memory is returned.

-T.3.1-

The T command jis used to direct the output of commands in the Utility
Command Set to a parallel printer attached to an 8200 series terminal.
It is normally used to produce hard copy output from text processors,
assemblers, and other utility programs.

DESCRIPTION

The general syntax of the T command is:

T,<command string>

where <command string> is a valid command line to be passed to FLEX. If
the T command is used with multiple commands per line using the end of
line character, it will only affect the command immediately following it
in the command line.

The T command assumes that the printer attached to the terminal does not
have form feed capability (see documentation of the NF command) and

generates line feed characters for each form feed encountered. The T
command cannot be used from BASIC. Some examples will clarify the use

of the T command:

+4+4TCAT
++4T LIST, TEXT

The first example will produce a printed listing of the catalog of the

working drive. The second example will produce a listing of the file
TEXT.

-T.4,1-

USEMF

The USEMF command is used to enable access to an MF-69, D-5, or DT-5

MiniFloppy diskette unit attached to a 6809 computer system with two

8-inch DMAF drives.

DESCRIPTION

“The general syntax of the USEMF command is:

USEMF [,<controller>] [,<drive type>]

where <controller> is an optional minifloppy controller type, and <drive

type> is an optional diskette drive type. Supported controllers are the

DC-4 (Default), the DC-3 (No Double Density), and the DC-2 (No Double

Density or Drive Ready). The DC-1 controller is not supported and

should not be used. Supported drive types are QUME(Default), TANDON (3

Ms. step rate), and SHUGART (30 Ms. step rate). Additionally, FAST

and SLOW are supported for 3 Ms. step and 30 Ms. step, respectively.

When the USEMF command is executed, a position independant MF-69 driver

is loaded into the utility command space at $C100. The USEMF program

then obtains approximately 330 bytes of memory from the top end of the

user memory and relocates the MF-69 driver program into this area. The

FLEX® memory end pointer is updated, and the MF-69 driver program is

linked into the resident (DMAF) diskette drivers. A message is then

printed informing the user that the MF-69 drives are now online. The

MF-69 drivers will remain resident until the system is re-booted.

Once the USEMF program is executed, any file references with drive

specifications of 2 or 3 are directed to MF-69 drives 0 and l,

respectively. The following example shows how USEMF can be used to copy

files from a 5-inch diskette to an 8-inch diskette. The 5-inch diskette

drives are Shugart SA-400 on a DC-2 controller.

+++USEMF SA400 DC2

-- DT-5 or MF-69 Now Online.

+++COPY,2,0,.1TXT

FILE STUFF =. TXT TO DRIVE #0 COPIED.

FILE MORESTUF . TXT TO ORIVE #0 COPIED.

FILE STILLMOR. TXT TO DRIVE #0 COPIED.

etc.

-U.1.1-

FLEX User's Manual

The USEMF command has the following restrictions:

1. The command must not be used when the system has been BOOTED from
6a 5-inch diskette. This would result in having multiple sets of

driver routines accessing a Single MF-69 controller. Such an
occurance could result in damaged file structures.

2. The command should not be used more than once between boots. A
convenient way to enforce this limitation is to place the command
into the startup file. The USEMF command initialization checks
for this error and issues a nasty message if used multiple times.

3. This command must not be used in conjunction with the UCAL
command. Again, the initialization code checks and issues an
error message if the UCAL drivers have been invoked.

-U.1.2-

UCAL

The UCAL command is used to enable access to a CalComp Marksman CDS-1

fixed disk unit attached to a 6809 computer system running FLEX9 (Not

FLEX9S which includes the CDS-1 drivers) having two 8-inch DMAF drives

or two 5-inch MF-68 drives.

DESCRIPTION

The general syntax of the UCAL command is:

UCAL

When the UCAL command jis executed, a position independant CalComp

Marksman CDS-1 driver is loaded into the utility command space at $C100.

The UCAL program then obtains approximately 280 bytes -of memory from

the top end of the user memory and relocates the CDS-1 driver program

into this area. The FLEX® memory end pointer is updated, and the CDS-1

driver program is linked into the resident disk drivers. A message is

then printed informing the user that the CDS-1 drive is now online. The

CDS-1 drivers will remain resident until the system is re-booted.

Once the UCAL program is executed, any file references with drive

specification of 2 is directed to the CDS-1 disk unit. The following

example shows how UCAL can be used to copy files from an 8-inch DMAF or

5-inch MF-68 diskette to the CalComp CDS-1 disk unit:

+++UCAL

Marksman Now Online.

+++COPY,0,2,-1XT

FILE STUFF o TXT TO DRIVE #2 COPIED.
’

FILE MORESTUF. TXT TO DRIVE #2 COPIED.

FILE STILLMOR.TXT TO DRIVE #2 COPIED.

etc.

The UCAL command has the following restrictions:

1. The command must not be used when the system has been BOOTED with

a FLEX9S system already supporting the CalComp drive.

2. The command must not be used more than once between boots. A

convenient way to enforce this limitation is to place the command
into the startup file.

3. This command must not be used in conjunction with the USEMF

command. :

-U.2.1-
:

UNITERM

The UNITERM command allows a FLEX computer system to act as a UnfFLEX

terminal. A special serial cable from a serial port at $£000 to a serial

port on the host UniFLEX system is used to transmit terminal data from

the FLEX console terminal to the UniFLEX system.

DESCRIPTION

The general syntax of the UNITERM command is:

UNITERM

To halt the UNITERM program and allow operation as a normal FLEX system,

enter one of the following control sequences on the CRT terminal: for a

8212W enter "CTRL-DEL"; for 8209,8212, or CT-82 terminals enter

"SHIFT-CTRL-DEL"; for other terminals, operation may be terminated by

enteringwhatever
terminal control sequence produces a hexadecimal $lF

ecimal 31).

All characters transmitted from the FLEX terminal will be buffered and

transmitted to the UniFLEX system as though there were only a CRT

terminal attached to the UniFLEX system. Characters, transmitted from

the UniFLEX system are placed in a large buffer and passed to the CRT

terminal as fast as the terminal will accept them. If for some reason

the CRT cannot accept data as fast as the UniFLEX system is transmitting

it (for instance, during graphics processing) the UNITERM program will
temporarily halt transmission from the UniFLEX system. to allow the
terminal to catch up.

The specific serial cable connections from the FLEXserial port to. the

UniFLEX serial port are as follows:

Port 0, Side A, MP-S2 Any Unused MP-S2Port

FLEX DB-25connector — UNiFLEXDB-25connector

2 3

3 2

7 7

8 20

jump 12 to 20

‘Make the connections above on the serial cable attaching the serial port

at $£000 on the FLEX system to the UniFLEX port. When the UNITERM

program is invoked, it will configure the serial port at $£000 on the

FLEX system and send a prompt to the CRT terminal. All transmission

from then on is sent to the UniFLEX system and should allow completely

transparent operation.

-U.3.1-

cnn

ee eene
nnn nnn en ee

ee OT ET

VER

The VER command is used to display the version number of a utility or

program.
.

DESCRIPTION

The general syntax of the VER command is:

VER,<file spec>

where <file spec> is the name of the program you wish to check. The
default extension is .CMD and the drive defaults to the working drive.

As an example:

+++VER,0.CAT

would display. the version number of the CAT command(from drive 0) on-

the terminal.
.

-V. 1.1-

VERIFY

The VERIFY command is used to set the File Management System's write
verify mode. If VERIFY is on, every sector which is written to the disk
is read back from the disk for verification (to make sure there are no
errors in any sectors). With VERIFY off, no verification is performed.

DESCRIPTION

The general syntax of the VERIFY command is:

VERIFY[,ON]
or

VERIFY[,OFFJ

where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed
without any parameters, the current status of VERIFY will be displayed
on the terminal. Example:

+++VERIFY,ON
+4++VERIFY

The first example sets the VERIFY mode to ON. The second line would
display the current status (ON or OFF) of the VERIFY mode. VERIFY
causes slower write times, but it is recommended that it be left on for
your protection.

-V.2. 1-

e

WRITPROM

The WRITPROM command is used to write the data contained in a disk

file to a 2716 compatible EPROM using a SWTPC MP-R EPROM programmer.

WRITPROM first checks the EPROM to be sure that it is erased, writes the

data, then verifies the contents.

DESCRIPTION

The general syntax of the WRITPROM command iS:

WRITPROML#n],<file spec>,<load address>,[+opt]
Where #n is optional and is the port number in which the PROM programmer

is installed, <file spec> is the name of the input file, <load address>
is the beginning address of the input file that will be written to the

EPROM, and [+opt] are the special options (described later) which can be

selected. The default extension on the file is .BIN and the default

drive is the working drive. The default port for WRITPROM is port #4

and the default file load address is 0000.

Some examples will clarify the syntax of WRITPROM:

+++WRITPROM,JUNK

+4+4WRITPROM #7, JUNK.CMD.1,C800,+R

The first example will write the 2K segment starting at address

0000 of the file JUNK.BIN on the working drive to the EPROMon the

programmer in port #4. The second example will write the contents | of

the file JUNK.CMD on drive 1 starting at address C800 to the EPROM on

the programmer in port #7 using extended retry capability.

Specifying the Load Address

The load address entered in the command line specifies the

beginning address of the 2K byte segment of the file which will be

written to the EPROM. As an example say that we want to store the 4K

program DIAG.CMD which resides from DOOO-DFFF into two EPROMs which will

be used in some type of ROM board or controller application. The first

EPROM should be written by the command WRITPROM,DIAG.CMD,D000.The

second EPROM should be written by WRITPROM,DIAG.CMD,D800.If no address
is specified, an address of 0000 is assumed. If an address is specified

that does not exist in the file, the message “SPECIFIED FILE CONTAINS.
ALL BYTES = FE" will be displayed when attempting to write the EPROM

since no part of the file will be loaded into WRITPROM's write buffer.

W.1.1

Options
R - Retry

Specifying the +R option in the command line will instruct WRITPROM todo multiple re-trys on programming. This feature should only be usedwhen the normal programming sequence fails to program an EPROM
correctly.

C - Check +25 volts

The C option is used to turn on the +25 volts on the MP-R board. BESURE THAT NO EPROM IS INSTALLED WHEN USING THIS OPTION. Entering anyCharacter thru the keyboard will turn off the 25 volts and returncontrol the the operating system. To be sure that a file that alwaysexists on the disk is used for the input file, the following sequenceshould always be used to invoke the C option:

+++WRITPROM,WRITPROM.CMD,+C
Remember that this option is for diagnostic purposes only and is

normally not used.

Error Messages
A number of messages can be displayed if an error is encounteredduring the programming procedure. Most of the messages are selfexplanatory. If an EPROM which is not completely erased is used, duringthe “is the EPROM erased" test any bytes that are not erased will bedisplayed by the message “BYTE AT (ADDRESS) IS (DATA) - CONTINUE?".Entering a Y will cause WRITPROM to check the next byte. Entering a Bwill cause the rest of the "is the EPROM erased" check to be bypassedand an N will cause the programming sequence to terminate. Whenverifying the contents of the EPROM after writing, a similar output isgenerated for those bytes which did not program correctly. Again theverification can continue by typing Y, be bypassed by typing B or exitedby typing N.

If the message "SPECIFIED FILE CONTAINS ALL BYTES = FF" is everdisplayed then either the specified input file contains only $FF's asdata or an incorrect load address was entered.

The EPROM should not be installed in the programmer until WRITPROMtells you to do so.

Default Port Addresses

If desired, the default port addresses can be changed by using theFIX utility on WRITPROM.CMD.

WRITPROM Address Contents
1000 $/09, 69A, 69K Default Port Address1002 /09 Default Port Address

W.1.2

XOUT

XOUT is a special form of the delete command which deletes all files

having the extension .OUT.

DESCRIPTION The general syntax of XOUT jis:

XOUTL,<drive spec>]

where <drive spec> is the desired drive number. If no drive is

specified all, .OUT files on the working drive will be deleted and if
auto drive searching is enabled, all .OUT files on drives 1 and 2 will
be deleted. XOUT will not delete any files which are delete protected
or which are currently in the print queue.

Example:
+++XOUT
+++XOUT 1

-X. 1. 1-

The Y command is used to automatically answer "Y" to prompts produced by

various FLEX utilities. This facility is especially useful when writing

EXEC files.

DESCRIPTION

The general syntax of the Y command is:

Y,<command string>

where <command string> is a valid command line to be passed to FLEX. If

the Y command is used with multiple commands per line using the end of

line character, it will only affect the command immediately following

it. Some examples will show the usefulness of the Y command:

+++Y ,DELETE,JUNK. TXT

DELETE "O.JUNK.TXT" ? Y

ARE YOU SURE? Y

This example shows how to delete a file without having to reply to the

"ARE YOU SURE?" prompt. This is especially useful in EXEC files. In a-

similar vein, you can perform COPY commands that automatically overwrite

existing files, as shown in the following example:

+++Y ,COPY,0,1,PROG

FILE PROGL =. TXT TO DRIVE #1 COPIED.

FILE PROG2 =. TXT TO DRIVE #1 FILE EXISTS

DELETE ORIGINAL? Y

ARE YOU SURE? Y COPIED.

FILE PROG3 ~~.TXT TO DRIVE #1 FILE EXISTS

DELETE ORIGINAL? Y

ARE YOU SURE? Y COPIED.

-Y.1.1-

GENERAL SYSTEM INFORMATION

I. DISK CAPACITY

Each sector of a FLEX diskette contains 252 bytes of user data since 4

bytes of each 256 byte sector is used by the system. The various

capacities of disks are as follows:

5-inch Single Sided 340 sectors, 85,680 bytes
5-inch Double Sided 680 sectors, 171,360 bytes
8-inch Single Sided, Single Density 1140 sectors, 287,280 bytes
8-inch Single Sided, Double Density 1976 sectors, 497,952 bytes
8-inch Double Sided, Single Density 2280 sectors, 574,560 bytes
8-inch Double Sided, Double Density 3952 sectors, 995,904 bytes

II. WRITE PROTECT

Floppy disks can normally be physically write protected to prevent FLEX

from performing a write operation. Any attempt to write to such a disk
will cause an error message to be issued. It is good practice to write

protect disks which have important files on them.

A 5-inch disk can be write protected by placing a piece of opaque tape
over the small rectangular cutout on the edge of the disk. 8-inch disks
are the opposite, i.e., tn order to write on a full size disk, you must

place tape over the notch on the rear edge of the diskette. To write

protect them, remove the tape. Some 8-inch disks. do not have a write

protect notch and cannot be write protected.

III. THE ‘RESET’ BUTTON

The RESET button on the front panel of your computer should NEVER BE

PRESSED DURING A DISK OPERATION. There should never be a need to

‘reset’ the machine while in FLEX. If the machine is ‘reset’ and the

system is writing data on the disk, it is possible that the entire disk

will become damaged. Again, never press ‘reset’ while the disk is

operating! Refer to the ‘escape’ character in TTYSET for ways of

stopping FLEX.

IV. NOTES ON THE P COMMAND

The various printer commands initially load into the utility command

space at $C100. A check is then made for a reserved printer driver area

(See the RM command) and if available, the printer driver is relocated

there. If there is no reserved printer area, the printer drivers are

relocated into the high end of user memory and the end of user memory

pointer is updated. When the command to be printed completes, the

memory occupied by the printer driver is returned to the user memory
area.

-3.1-

FLEX User's Manual

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE

If an attempt is made to access a drive not containing a disk, an error

message is normally issued. However, if you are using 5-inch disks and
a DC-1 or DC-2 controller, the system will hang up attempting to read
until a disk is inserted and the door closed.

VI. SYSTEM ERROR NUMBERS

Any time that FLEX detects an error during an operation, an appropriate
error message will be displayed on the terminal. FLEX internally
translates a derived error number into a plain language statement using
a look-up file called ERROR.SYS. If you have forgotten to copy this
“SYS file onto a disk that you are using, FLEX will report a

corresponding number as shown below:

DISK ERROR #xx

where ‘xx' is a decimal error number. The table below is a list of
these numbers and what error they represent.

ERROR # MEANING

ILLEGAL FMA FUNCTION CODE ENCOUNTERED
THE REQUESTED FILE IS IN USE
THE FILE SPECIFIED ALREADY EXISTS
THE SPECIFIED FILE COULD NOT BE FOUND
SYSTEM DIRECTORY ERROR-REBOOT SYSTEM
THE SYSTEM DIRECTORY IS FULL
ALL AVAILABLE DISK SPACE HAS BEEN USED
READ PAST END OF FILE
DISK FILE READ ERROR
DISK FILE WRITE ERROR
THE FILE OR DISK IS WRITE PROTECTED
THE FILE IS PROTECTED-FILE NOT DELETED
ILLEGAL FILE CONTROL BLOCK SPECIFIED
ILLEGAL DISK ADDRESS ENCOUNTERED
AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
DRIVE NOT READY
THE FILE IS PROTECTED-ACCESS DENIED
SYSTEM FILE STATUS ERROR
FMS DATA INDEX RANGE ERROR
FMS INACTIVE-REBOOT SYSTEM

ee
ee

eeet
et

SOON
PONE
OWUOUNMAMAWHE
21 ILLEGAL FILE SPECIFICATION
22 SYSTEM FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW-DISK TOO SEGMENTED
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR-FILE DAMAGED
26 COMMAND SYNTAX ERROR-RE-TYPE COMMAND
27 THAT COMMAND IS NOT ALLOWED WHILE PRINTING
28 WRONG HARDWARE CONFIGURATION

-3.2-

FLEX User's Manual

VII. SYSTEM MEMORY MAP

6 The following is a brief list of the RAM space required by the FLEX

Operating System. All address are in hex.
:

0000 - BFFF User RAM

*Note: Some of this space is used by
NEWDISK, COPY, and the printer utilities.

C000 - CO7F System Stack

C080 - COFF Line Input Buffer

C100 - C6FF Utility command space

C700 - DFFF Disk Operating System

CDOO FLEX cold start entry address

CD03 FLEX warm start entry address

For a more detailed memory map, consult the ‘Advanced Programmer's
Guide’.

-3.3-

FLEX User's Manual

VIII. FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES

In order for the FLEX 1/0 functions to operate properly, all userprogram character input/output subroutines should be vectored thru theFLEX operating system rather than the computer's monitor. Below is alist of FLEX's 1/0 subroutines and a brief description of each. Al]given addresses are in hexadecimal.

GETCHR at $CD15
This subroutine is functionally equivalent to S-BUG's Character inputroutine. This routine will look for one character from the controlterminal (1/0 port #1) and store it in the A accumulator. Once called,the input routine wil] loop within itself until a Character has beeninput. Anytime input is desired, the call JSR GETCHR or JSR $CD15 shouldbe used.

GETCHR automatically sets the 8th bit to 0 and does not check forparity. A call to this subroutine affects the processor's registers asfollows:

ACC. A loaded with the character input from the terminal
B,X,Y,U not affected

PUTCHR at $CD18
This subroutine is used to output one character from the computer to thecontrol port (1/0 port #1). It is functionally equivalant to the outputcharacter routine in S-BUG.

To use PUTCHR,the character to be output should be placed in the Aaccumulator in its ASCII form. For example, to output the letter 'A' onthe control terminal, the following program should be used:

LDA #$41
JSR $CD18

The processor's registers are affected as follows:

ACC. A changed internally
B,X,Y,U not affected

PSTRNG at $CDI1E
PSTRNG is a subroutine used to output a string of text on the controlterminal. When address $CDIE is called, a carriage return and line feedWill automatically be generated and data output will begin at thelocation pointed to by the index register. Output will continue until ahex 04 is seen. The same rules for using the ESCAPE and RETURN keys forStopping output apply as described earlier.
The accumulator and register status after using PSTRNG are as follows:

ACC. A Changed during the operation

-3.4-

FLEX. User's Manual

ACC. B Unchanged
X Contains the memory location of the last character read from the

string (usually the 04 unless stopped by the ESC key)

YSU Unchanged

NOTE: The ability of using backspaceand line delete characters is a

function of your user program and not of the FLEX 1/0 routines described

above.

STAT at $CD4E
Oe

This routine is used to determine the “status” of the input device.

That is, to see if a character has been typed on the input terminal

keyboard. Its function is to check for characters such as the ESCAPE key
in FLEX which allows breaking of the output. This routine returns an

EQual condition if no character was hit and a Not-Equal condition if a

character was hit. No registers, except for the condition codes, may be

altered.

For additional information consult the ‘Advanced Programmer's Manual’.

-3. 5-

FLEX User's Manual

IX. BOOTING THE FLEX DISK OPERATING SYSTEM

In order to read FLEX from the system disk upon powering up your system,you must have a_ short program in RAM or ROM memory. This program is
called a 'bootstrap' loader.

If you are using a Southwest Technical Products disk system and the
S-BUG monitor, there are bootstraps stored in this ROM which you can
use. They are executed by simply typing a 'D' for the full size floppy
or a 'U' for the mini floppy.

Those users of other hardware or monitor ROM should use the boot
supplied with the hardware if compatible with FLEX. A sample boot (for
the SWTPc mini system) is given here for reference.

If the system does not boot properly, re-position the system disk in the
drive and re-execute the bootstrap loader.

0100 B6 ==E018 START LDA COMREG TURN MOTOR ON
0103 86 00 LDA #0
0105 B7 E014 STA DRVREG
0108 8E 0000 LDX #0000
010B 3D OVR MUL DELAY FOR SPEED UP
010C 30 =1F LEAX -1,X
Q10E 26 FB BNE OVR
0110 C6 =OF LDB #$0F RESTORE
0112 F7 ~=£018 STB COMREG
0115 8D 2B BSR RETURN
0117 F6 £018 LOOP1 LDB COMREG
O11A C5 01 BITB #1
011C 26 F9 BNE LOOP1
O11E 86 Ol LDA #1
0120 B7 —EOIA STA SECREG
0123 8D «1D BSR RETURN
0125 C6 =8&C LDB #$8C READ WITH LOAD
0127 F7 E018 STB COMREG
012A 8D 16 BSR RETURN
012C 8E C000 LDX #$C000
O12F C5) «02 LOOP2 BITB” #2 DRQ?
0131 27 05 BEQ LOOP3
0133 B6 E01B LDA DATREG
0136 A7 =80 STA 0,X+
0138 Fé =E018 LOOP3 LDB COMREG
013B C5 Ol BITB. #1 BUSY?
013D 26 FO BNE LOOP2
013F 7E C000 JMP $C000
0142 8D 00 RETURN BSR RTN
0144 39 RTN RTS

-3.6-

FLEX User's Manual

X. REQUIREMENTSFOR RELOCATABLEPRINTER DRIVERS

There are four routines that must be furnished in all printer drivers --

1) An OPEN routine which is called to perform all necessary printer

initialization,

2) A CLOSE routine which is called to perform all necessary printer
cleanup and termination operations,

3) A PUT routine which is called to output the next character to the

printer, and
,

4) A CHECK routine which is called to determine if the printer is

ready to accept another character. |

The assembled printer driver which contains these routines is then

combined with the “P.COR" binary file furnished with the operating

system. For the procedure used to combine these two files see the

documentation on P.COR, section P.2.

All four of the required routines may be located anywhere in the space

provided for the routines (C312-C6FF hex). The only requirement is that

one of the long branch (LBRA) instructions in the entry point vector

(located at C302-C30D hex) will branch to the appropriate routine. All

four routines must end with a return from subroutine (RTS) instruction.

All four routines must preserve the contents of the Y and U registers.

The OPEN and CLOSE routines have no input or output parameterization,
but must preserve the contents of the Y and U registers. The PUT

routine expects the character to be output in the A register on entry to

the routine, while the B, X, Y and U registers must be preserved. The

CHECK must return a minus indication if the printer is ready to accept

another character, otherwise it must return a plus indication. The

contents of all of the registers must be preserved by the CHECK routine.

Since the printer driver will be relocated from the $C300 location where

it is assembled, the driver must be written ‘in position independent

code. Two good examples of position independent code are the parallel
printer driver and the serial printer driver Wisted in chapter 3,

section XI of this manual. The following are goodrules of thumb that

may be used while writing position independent code.*.

1) If an instruction that will be relocated needs to reference a byte

of data that will be relocated as well, “program counter relative"

addressing must be used. All this means is that a ",PCR" must be

added to the instruction. As an example refer to both the

position independent parallel printer driver listed in section XI

of chapter 3 and the non position independent parallel printer

driver listed in section XII of chapter 3. Look at the references

to variable "PFLAG". “COM PFLAG" is not position independent,

while "COM PFLAG,PCR" is.

-3. T-

FLEX User's Manual

2) If the location referenced by a JMP or JSR instruction will be
relocated, ‘do not use JMP or JSR; use BRA, BSR, LBRA or LBSRinstead.

3) It is okay to use any of the "indexed" addressing modes in
position independent code. Instuctions that make use of "indexed"
addressing may have operands that look like any of the following:0,X or 5,X or 0,Y and so on.

4) It is okay to use the "immediate" addressing mode in positionindependent code. An immediate value is one preceded by the
number sign character (#).

The following table describes the location where all items of theprinter driver must be assembled.

C300 - C301 Two byte count of the number of bytes in the driver. This
count includes all of the bytes between C302 and the end
of the driver.

C302 - C304 LBRA OPEN PRINTER INITIALIZE
C305 - C307 LBRA CLOSE PRINTER TERMINATE
C308 - C30A_ LBRA PUT PRINT CHARACTER
C30B - C30D LBRA CHECK PRINTER READY CHECK

C30E - C30F Port address of the printer interface. The default portaddress should be assembled into these locations. If a

@port number jis supplied on the command line, a new portaddress will be stored here by the P.COR processing.
C310 Interface Side designator. If a “side” is specified in

the command port specification, the sign bit of this byteis set. A side specification of "A" will result in $80,"B" will be $81, etc.

C311
.

Reserved byte - assemble a zero into this location.

C312 - C6FF Space for printer driver routines. These routines must
fit within the space provided. The entire space does not
need to be used.

-3. 8-

FLEX User's Manual

XI. PARALLEL AND SERIAL PRINT DRIVERS

The following parallel and serial print drivers are provided to assist

the programmer in the creation of position independant relocatable print

drivers for use with the P.COR file. The parallel driver assumes a

parallel port having an address of $E01C which is the default address

for port seven in a /09 computer system. It makes use of the CENTRONIX®

handshake, and (although position independant) is essentially equivalent
to the’non-relocatable driver listed in section XII. The serial driver

assumes an acia at address $E01C (also defaulting to port 7) and

transmits with 8 data bits, no parity, and two stop bits. The baud rate

is set at the interface.

By comparing the position independant and non-relocatable parallel print

drivers, it will be simple to write your own custom printer drivers.

Just remember to use program counter relative addressing for all

variables defined within the printer driver itself.

-3.9-

FLEX User's Manual

PARALLEL PRINTER DRIVER 10-23-79 TSC 6809 XASMB PAGE 1

THE FOLLOWING PRINTER DRIVER WAS WRITTEN
IN POSITION INDEPENDANT CODE AND IS
DESIGNED TO BE APPENDED TO THE P.COR
FILE TO MAKE A PRINTER COMMAND

+

Ft
oF

tb

Oe
OF

SET UP ADDRESSESAND DRIVER LENGTH

C300 ORG $€300 MUST START AT C300

C300 0050 FDB ENDS-POPEN LENGTH OF DRIVER
*

* ENTRY VECTORS
*

C302 16 O00E POPEN LBRA OPEN PRINTER INITIALIZE
C305 16 §=001B PQUIT LBRA CLOSE PRINTER TERMINATE
C308 16 §=6O01A PCHAR LBRA PUT _ PRINT CHARACTER
C30B 16 §©002F PCHEK LBRA CHECK PRINTER READY CHECK

*

* PARALLEL PRINTER FILE CONTROL BLOCK
*

C30E EOC . PIA FDB $EOIC DEFAULT PORT ADDRESSC310 00 SIDE FCB 0 INTERFACE SIDE VALUEC311 00 FCB 0 ~- RESERVED BYTE --

C312 FF PFLAG FCB $FF PRINTER READY FLAG

0000 DR EQU 0 DATA REGISTER OF PIA
0000 DDR EQU 0 DATA DIRECTION REG OF PIA
0001 CR EQU 1 CONTROL REGISTER OF PIA

*

* PRINTER INITIALIZATION
*

C313 AE 8C F8 OPEN LDX PIA,PCR PICK UP PIA ADDRESS
C316 86 §63A LDA #$3A SELECT DATA DIRECTION REGC318 A701 STA CR,X BY WRITING 0 IN DDR CONTROLC31A 86 FF LDA #$FF SELECT ALL OUTPUT LINESC31C A784 STA DDR, X PUT IN DATA DIRECTION REGC31E 86 3£ LDA #$3E SET UP FOR TRANSITION CHECKSC320 A701 STA CR,X AND ENABLE OUTPUT REGISTERC322 39 RTS

*

* TERMINATE PRINTER PROCESSING
*

C323 86 §6OD CLOSE LDA #$0D PRINT CARRIAGE RETURN

~3.10-

PARALLEL PRINTER DRIVER

C325 8D 16

C327 2A FC

C329 34 8610

C32B 6F 8C E4

C32E AE 8C DD

C331 A7 = 84

C333 86 36

C335 A7 OL

C337 86 = 33E

C339 A7 Ol

C33B 35 90

C33D 34 10

C33F 6D 8 DO

C342 2B OC

C344 AE 8 C7

€347 6D O01

C349 2A 305

C34B 6D 8684

C34D 63 «=8&CC2.

C350 35 90

C352

0 ERROR(S) DETECTED

*

*

PUT BSR

BPL
PSHS
CLR
LDX.
STA
LDA
STA

LDA

STA
PULS

*

* CHECK FOR PRINTER READY
*

CHECK PSHS
| TST

BMI
-LDX
TST
BPL

TST
COM

CHEXIT PULS

ENDS EQU

END

FLEX User's Manual

10-23-79 TSC 6809 XASMB PAGE 2

* PRINTER OUTPUT CHARACTER ROUTINE

CHECK TEST FOR PRINTER READY

PUT LOOP UNTIL PRINTER READY

X SAVE INDEX REGISTER

PFLAG,PCR SET PRINTER FLAG NOT READY

PIA,PCR GET PRINTER ADDRESS

DR,X SET DATA IN OUTPUT REGISTER

#$36 SET DATA READY, HIGH TO LOW

CR,X STORE IN CONTROL REGISTER

#$3E THEN SEARCH FOR TRANSITION

CR,X OF LOW LEVEL TO HIGH LEVEL

X,PC

X SAVE INDEX REGISTER

PFLAG,PCR CHECK READY FLAG

CHEXIT IF NEGATIVE, PRINTER READY

PIA,PCR PICK UP INTERFACE ADDRESS

CR,X CHECK FOR TRANSITION

CHEXIT IF PLUS, PRINTER NOT READY

DR,X RESET TRANSITION STATUS

PFLAG,PCR SET PRINTER READY FLAG

X,PC

* END OF DRIVER.

-3.11-

FLEX User's Manual

SERIAL PRINTER DRIVER

C300

C300 0044

C302 16
C305 16
C308 16
C30B 16

C30E EO1C
C310 00
C311 00

C312 A6
C315 2A

C317 48
C318 48
C319 AB

C31C A7

C31F AE

C322 86
C324 A7
C326 86
C328 A7
C32A 6D
C32C 39

C32D 86

C32F 8D
C331 2A
C333 34
C335 AE
C338 A7
C33A 35

000D
0025
0024
002E

8C FB

8C F3

8C FO

8C EC

OD

0B

FC

10

8C D6

90

10-23-79 TSC 6809 XASMB PAGE 1

* SET UP ADDRESS AND DRIVER LENGTH

ORG

FDB

$C300 MUST START AT $C300

ENDS-POPEN LENGTH OF DRIVER

* ENTRY VECTORS

POPEN

PQUIT
PCHAR

PCHEK

LBRA
LBRA
LBRA
LBRA

OPEN PRINTER INITIALIZE
CLOSE PRINTER TERMINATE
PUT PRINT CHARACTER
CHECK PRINTER READY CHECK

* SERIAL PRINTER DRIVER FILE CONTROL BLOCK

ACIA

SIDE

* SEE

OPEN

FDB

FCB
FCB

$EO1C DEFAULT PORT ADDRESS
0 INTERFACE SIDE VALUE
0 -- RESERVED BYTE --

IF A SIDE IS SPECIFIED

LDA

BPL
_

ASLA
ASLA
ADDA

STA

SIDE ,PCR
ARESET IF POSITIVE NO SIDE SPECIFIED

MULTIPLY BY FOUR
ACTA+1,PCR
ACIA+1,PCR STORE INTO DEVICE ADDRESS

* RESET ACIA DEVICE

ARESET LDX

LDA

STA
LDA

STA
TST
RTS

ACIA,PCR GET ACIA ADDRESS
#%00000011
0,X DO MASTER RESET ON ACIA
#%00010001
0,X SET UP NO PARITY BIT,
1,X 8 DATA BITS, 2 STOP BITS

* CLOSE DOWN PRINTER PROCESSING
CLOSE LDA #$0D SEND OUT CARRIAGE RETURN

* WRITE A CHARACTER TO PRINTER

PUT BSR

BPL

PSHS
LDX
STA
PULS

CHECK WAIT FOR PRINTER READY
PUT

Xx

ACIA,PCR GET ACIA ADDRESS
1,X STORE INTO DATA REGISTER
X,PC

-3. 12-

SERIAL PRINTER DRIVER

FLEX User's Manual

10-23-79 TSC 6809 XASMB PAGE 2

* CHECK TO SEE IF PRINTER IS READY

C33C 34 804 CHECK

C33E £6 9C CD

C341 56

C342 56
C343 56

C344 35 = 884

C346 ENDS

O ERROR(S) DETECTED

PSHS

LDB
RORB

RORB

RORB

PULS
~

EQU

END

B

LACIA,PCR] GET ACIA STATUS

SHIFT READY BIT

. INTO SIGN FLAG

B,PC

* END OF DRIVER

-3. 13-

FLEX User’s Manual

XII. FORMER P AND PRINT.SYS

“FLEX, as originally supplied, included a printer driver that will workwith most parallel type printers, such as the SWTPC PR-40. Althoughthis printer driver has been superseded, a source listing has beenincluded for Compatability purposes. If desired, these drivers may beused with the PO print command. The requirements for this type ofdriver are as follows:

1) The driver must be in a file called PRINT.SYS

2) Three separate routines must be supplied, a printer initialization
routine (PINIT at $CCCO), a check ready routine (PCHK at $CCD8),and an output character routine (POUT at $CCE4).

3) When the POUT routine jis called by FLEX, the character to be outputwill be in the A accumulator. The output routine must not destroythe B, X, Y, or U registers. PINIT may destroy the A, B, and X
registers. PCHK may not alter any registers.

4) The routines MUST Start at the addresses specified, but may be
continued anywhere in memory if there is not room where specified.If placed elsewhere in memory, be certain they do not conflictwith any utilities or programs which will use them.

5) All three routines must end with a return from subroutine (RTS)instruction.

*

* PRINT.SYS PIA DRIVERS FOR GENERAL CASE PRINTER*

EOIC PIA EQU $EOIC PIA ADDRESS FOR PORT #7

*

* PRINTER INITIALIZATION (MUST BE AT $CCCO)*

CCCO ORG $CCCO MUST RESIDE AT $CCCOCCCO 86 «=A PINIT LDA #$3A SELECT DATA DIRECTION REG.CCC2 B7 = E010 STA PIA+1 BY WRITING O IN DDR CONTROLCCC5 86 =FF LDA #$FF SELECT ALL OUTPUT LINESCCC7 B7 ~—sEOC STA PIA PUT IN DATA DIRECTION REG.CCCA 86 =.33E LDA #$3E SET UP FOR TRANSITION CHECKSCCCC B7 = E01D STA PIA+1 AND ENABLE OUTPUT REGISTERCCCF 39 RTS

~3.14-

CcDO

CCD3
CCD6

CCD8

CCD8
CCDB

CCDD
CCEO
CCE2

CCE3

CCE4
CCE4
CCE6
CCE8
CCEB

CCEE
CCFO

CCF2
CCF4
CCF7

7D

7D
2B
39

FF

86.
B7
39

EOLC

CCE3

FLEX User's Manual

*

* PRINTER READY ROUTINE
*

PREADY TST PIA RESET PIA READY INDICATION

COM PFLAG SET THE PRINTER READY FLAG

RTS
*

* CHECK FOR PRINTER READY (MUST BE AT $CCD8)
*

ORG $CCD8 PRINT TEST AT $CCD8

PCHK TST PFLAG TEST FOR PRINTER READY

BMI PCHKX IF NEGATIVE, PRINTER READY

TST ~—PIA+1 CHECK FOR TRANSITION

BMI PREADY IF MINUS, PRINTER NOW READY

PCHKXRTS

* PRINTER READY FLAG
*

PFLAG FCB $FF PRINTER READY FLAG

*

* PRINTER OUTPUT CHARACTER ROUTINE (MUST BE AT $CCE4)
*

ORG $CCE4 MUST RESIDE AT $CCE4

POUT BSR PCHK TEST FOR PRINTER READY

BPL POUT LOOP UNTIL PRINTER READY

CLR PFLAG SET PRINTER FLAG NOT READY

STA PIA SET DATA IN OUTPUT REGISTER

LDA #$36 SET DATA READY, HIGH TO LOW

BSR POUTB. STUFF BYTE INTO THE PIA

LDA #$3E THEN SEARCH FOR TRANSITION

POUTB STA PIA+1 OF LOW LEVEL TO HIGH LEVEL

RTS

END

This mechanism for creating printer drivers is adequate for those

drivers that will fit entirely within the printer driver area located

from $CCCO to $CCF7.
it

For those drivers that require additional memory,

is recomended that the P.COR program be used with position

independant printer drivers.

-3. 15-

COMMAND SUMMARY

APPEND,<file spec>L,<file list>],<file spec>
Default Extension: .TXT

Description Page: A.1

AR ,<drive>,<drive>
Description Page: A.3

ASN[,W=<drive>J[,S=<drive>]
Description Page: A.2

BUILD,<file spec>
:

Default Extension: .TXT

Description Page: B.1

CATL,<drive list>][,<match list>]
Description Page: C.1

C4MAT

Description Page: C.5

CLEAN,<drive number>

Description Page: C.6.1

COPY,<file spec>,<file spec>
COPY,<file spec>,<drive>
COPY ,<drive>,<drive>L,<match list>]

Description Page: C.2

DATEL,<mm,dd,yy>J]
Description Page: D.1

DELETE,<file spec>L,<file list>]
Description Page: D.2

ECHO,<string>
Description Page: E.1

EXEC ,<file spec>
Default Extension: .TXT

Description Page: E.2

FIX,<file spec>[,<file spec>]
Default Extension: .BIN

Description Page: F.1

GET,<file spec>[£,<file list>]
Default Extension: .BIN

Description Page: 1.7

I,<file spec>,<command>
Default Extension:. «TXT

Description Page: I.1

-4,1-

FLEX Advanced Programmer's Guide

JUMP ,<hex address>

Description Page: J.1

LINK,<file spec>
Default Extension: .SYS

Description Page: L.1

LIST,<file spec>[,<line range>][,+<options>]
Default Extension: .TXT

Description Page: L.2

MIRROR,<drive>,<drive>[,+<options>]
Description Page: M.3

MON

Description Page: 1.7

MV,<file spec>,<file spec>
Default Extension: .TXT

Description Page: M.2

N,<command>

Description Page: N.2

NEWDISK,<drive>
Description Page: N.1

0,<file spec>,<command>
Default Extension: .OUT

Description Page: 0.1

P ,<command>
Description Page: P.1

P.COR

Description Page: P.2

PO, <command>
Description Page: P.3

PROT,<file spec>[,<ontions>]
Description Page: P.5

PSP[,<file spec>][,<print command>]
Default Extension: .OUT

-CMD

Description Page: P.4

PUTBOOT,<drive>
PUTBOOT,<file spec>

Default Extension: .SYS

Description Page: P.6

~4.2-

FLEX Advanced Programmer's Guide

Q,<command>
Description Page: Q.1

QCHECK
Description Page: Q.2

RENAME,<file spec 1>,<file spec 2>

Default Extension: .TXT

Description Page: R.1

RM[,<size>]
Description Page: R.2

READPROM,<file spec>
Default Extension: .BIN

Description Page: R.3

S,<command>
Description Page: S.1

t

SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]
Default Extension: .BIN

Description Page: S.2

SAVE.LOW
Description Page: $.2.2

SBOX[,<parameter list>]
Description Page: S.3

|

SUM,<file spec>
Description Page: S.6

SP , <command>
Description Page: S.4

STARTUP
Description Page: S.5

TIME, <command>
Description Page: T.3

TOUCH,<file spec>
Default Extension: .TXT

Description Page: T.2

TTYSET[,<parameter list>]
Description Page: T.1

UCAL

Description Page: U.2

-4.3-

FLEX Advanced Programmer's Guide

USEMF

Description page: U.1

VER

VER <file spec>[,<file spec>...]
Default Extension: .CMD

Description Page: V.1

VERIFYL,<ON or OFF>]
Description Page: V.2

WRITPROM,<file spec>[,<address>]
Default Extension: .BIN

Description Page: W.1

XOUTL,<drive spec>]
Description Page: X.1

Y ,<command>

Description Page: Y.1

-4.4-

FLEX Advanced Programmer's Guide

NOTES:

~4.5-

